Authors: Xuening Zhu, Feng Li and Hansheng Wang Abstract: In this work we develop a distributed least squares approximation (DLSA) method, which is able to solve a large family of regression problems (e.g., linear regression, logistic regression, Cox’s model) on a distributed system. By approximating the local objective function using a local quadratic form, we are able to… Continue reading Our dlsa paper is accepted in the Journal of Computational and Graphical Statistics
Author: Feng Li
Dr. Feng Li is an Associate Professor of Statistics in the School of Statistics and Mathematics at Central University of Finance and Economics in Beijing, China. Feng obtained his Ph.D. degree in Statistics from Stockholm University, Sweden in 2013. His research interests include Bayesian computation, econometrics and forecasting, and distributed learning. His recent research output appeared in statistics and forecasting journals such as the International Journal of Forecasting and Statistical Analysis and Data Mining, AI journals such as Expert Systems with Applications, and medical journals such as BMJ Open.
New Paper: Forecasting reconciliation with a top-down alignment of independent level forecasts
Authors: Matthias Anderer and Feng Li Abstract: Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. The overall forecasting performance is heavily affected by the forecasting accuracy of intermittent time series at bottom levels. In this paper, we present a forecasting reconciliation approach that treats the bottom level forecast… Continue reading New Paper: Forecasting reconciliation with a top-down alignment of independent level forecasts