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Today we are going to learn...

1 Introduction to Multivariate Returns

2 Vector autoregressive models

3 Vector moving average models

4 Vector ARMA models
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Multivariate Returns I
• Let rt = (r1t, ..., rNt) be the log returns of N assets at time t, he

multivariate analyses of time series are concerned with the joint distribution
of trtuTt=1.

• The analysis is then focused on the specification of the conditional
distribution function F(rt|rt´1, ..., r1,θ). In particular, how the conditional
expectation and conditional covariance matrix of rt evolve over time

E(rt) = E(r1t, ..., rNt)
1 = (E(r1t), ...,E(rNt))

1

Γ0 = Cov(rt) = E((rt ´ E(rt))(rt ´ E(rt))
1)

where The ith diagonal element of Γ0 is the variance of rit , whereas the
(i, j)th element of Γ0 is the covariance between rit and rjt
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Multivariate Returns II

• The series rt is weakly stationary if its first and second moments are time
invariant. In particular, the mean vector and covariance matrix of a weakly
stationary series are constant over time.

• Unless stated explicitly to the contrary, we assume that the return series of
financial assets are weakly stationary.
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Cross-Correlation Matrices I
• Let D be a kˆ k diagonal matrix consisting the standard deviations of rit for
i = 1, ...,k. The concurrent, or lag-zero, cross-correlation matrix of rt is
defined as

ρij(0) = D´1Γ0D
´1 =

Cov(rit, rjt)
std(rit)ˆ std(rjt)

• Note that ρij(0) measures the linear dependence of rit and rjt.
• Note that it is the correlation of the two series at time t.
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Cross-Correlation Matrices II
• An important topic in multivariate time series analysis is the lead-lag

relationships between component series.
• To this end, the cross correlation matrices (CCM) are used to measure the

strength of linear dependence between time series.
• The lag-l cross-covariance matrix of rt is defined as

Γl = E((rt ´ µ)(rt´l ´ µ)
1)

ρij(l) = D
´1ΓlD

´1 =
Cov(rit, rj,(t´l))

std(rit)ˆ std(rjt)

• For negative lag l, we have Γl = Γ 1´l.
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Cross-Correlation Matrices III

• Sample Cross-Correlation Matrices Given the data rt, the
cross-covariance matrix Γl can be estimated by

Γ̂l =
1
T

T
ÿ

t=l+1
(rt ´ r̄)(rt ´ r̄)

1

where r̄ =
řT

t=1 rt/T is the vector of sample means.
• And the cross-correlation matrix is

ρ̂ij(l) = D̂
´1Γ̂lD̂

´1
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Empirical Properties of Returns

• Daily returns of the market indexes and individual stocks tend to have high
excess kurtoses. For monthly series, the returns of market indexes have
higher excess kurtoses than individual stocks.

• The mean of a daily return series is close to zero, whereas that of a monthly
return series is slightly larger.

• Monthly returns have higher standard deviations than daily returns.
• Among the daily returns, market indexes have smaller standard deviations

than individual stocks. This is in agreement with common sense.
• The skewness is not a serious problem for both daily and monthly returns.
• The descriptive statistics show that the difference between simple and log

returns is not substantial.
• Example in R
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VAR(1) model I
• A simple vector model useful in modeling asset returns is the vector

autoregressive (VAR) model.
• A multivariate time series rt is a VAR process of order 1, or VAR(1) for

short, if it follows the model

rt = φ0 +Φrt´1 + at

where φ0 is a k-dimensional vector, Φ is a kˆ k matrix, and at is a
sequence of serially uncorrelated random vectors with mean zero and positive
definite covariance matrix Σ. In the literature, it is often assumed that at is
multivariate normal.
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VAR(1) model II

• The elements of Φ gives the conditional effect of the linear dependence
between rit and rj(t´1).

• Consider the bivariate case, If Φ12 = 0 and Φ21 = 0, then there is a
unidirectional relationship from r1t to r2t . If Φ12 = Φ21 = 0, then r1t and
r2t are uncoupled. If Φ12 ‰ 0 and Φ12 ‰ 0, then there is a feedback
relationship between the two series.

• In general, the coefficient matrix Φ measures the dynamic dependence of rt.
• VAR(1) model is called a reduced-form model because it does not show

explicitly the concurrent dependence between the component series.
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Structural Forms of VAR(1) model I

• An explicit expression involving the concurrent relationship can be deduced
from the reduced-form model by a simple linear transformation.

• Because Σ is positive definite, there exists a lower triangular matrix L with
unit diagonal elements and a diagonal matrix G such that Σ = LGL 1
(Cholesky decomposition).

• Therefore L´1Σ(L111)´1 = G.
• Define bt = L

´1at, we have E(bt) = 0 and Cov(bt) = G. Since G is a
diagonal matrix, the components of bt are uncorrelated.

• Multiplying L´1 from the left to the VAR(1) model, we obtain

L´1rt = L
´1φ0 + L

´1Φrt´1 + L
´1at

= φ˚0 +Φ˚rt´1 + bt

• The model shows explicitly the concurrent linear dependence of rkt on rit.
This equation is referred to as a structural equation for rkt in the
econometric literature.
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Structural Forms of VAR(1) model II

• The reduced-form model is equivalent to the structural form used in the
econometric literature.

• In time series analysis, the reduced-form model is commonly used for two
reasons. The first reason is ease in estimation. The second and main reason
is that the concurrent correlations cannot be used in forecasting.
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Stationarity Condition and Moments of a VAR(1) Model I

• Assume that the VAR(1) model is weakly stationary. Taking expectation of
the model and using E(at) = 0, we obtain

µ = (1 ´́́Φ)´1φ0

• Using φ0 = (1 ´́́Φ)µ, the VAR(1) model can be written as

(rt ´ µ) =Φ(rt´1 ´ µ) + at

r̃t =Φr̃t´1 + at

• By repeated substitution, we have

r̃t = at +Φat´1 +Φ
2at´2 +Φ

3at´3 + ...

• at is referred to as the shock or innovation of the series at time t.
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Stationarity Condition and Moments of a VAR(1) Model II
• Similar to the univariate case, at is uncorrelated with the past value rt´j for

all time series models.
• Cov(rt,at) = Σ

• For a VAR(1) model, rt depends on the past innovation at´j with coefficient
matrix Φj.

• Φj should converge to zero as jÑ∞. (Why?) This means that the k
eigenvalues of Φ must be less than 1 in modulus which is the necessary and
sufficient condition for weak stationarity.

• Furthermore, the lag-j cross-covariance matrix is obtained as

E(r̃tr̃
1
t´l) =ΦE(r̃t´1r̃

1
t´l)

Γl =ΦΓl´1

• Pre- and postmultiplying D´1/2, we obtain the corr-correlation matrix

ρl = D
´1/2ΦΓl´1D

´1/2

= (D´1/2ΦD1/2)(D´1/2Γl´1D
´1/2)

= γρl´1
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Stationarity Condition and Moments of a VAR(1) Model III

• By repeated substitution, we have

ρl = γ
lρ0
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Vector AR(p) Models I

• A multivariate time series rt is a VAR process of order p, or VAR(p) for
short, if it follows the model

rt = φ0 +Φ1rt´1 + ... +Φprt´p + at

(I´Φ1B´ ...´ΦpB
p)rt = φ0 + at

Φ(B)rt = φ0 + at

• If rt is weakly stationary, then we have

µ = (I´Φ1B´ ...´ΦpB
p)´1φ0

• Let r̃t = rt ´ µ, the VAR(p) model becomes

r̃t =Φ1r̃t´1 + ... +Φpr̃t´p + at

• Cov(rt,at) = Σ
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Vector AR(p) Models II

• Cov(rt´l,at) = 0
• Γl =Φ1Γl´1 + .. +ΦpΓl´p which is called the moment equations. It is a

multivariate version of the Yule-Walker equation of a univariate AR(p)
model.

• In terms of CCM, the moment equations become,
ρl = φ1ρl´1 + .. +φpρl´p where γi = D

´1/2ΦiD
1/2.

• Similar to the VAR(1) case, the necessary and sufficient condition of weak
stationarity is equivalent to all solutions of the determinant |Φ(B)| = 0 being
outside the unit circle.
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Building a VAR(p) Model I
• Parameters of these VAR(p) models can be estimated by the ordinary

least-squares (OLS) method. This is called the multivariate linear regression
estimation in multivariate statistical analysis.

• One can estimate the model by the maximum-likelihood (ML) method.
• OLS and ML are equivalent in estimating Φ.
• However, there are differences between the estimates of Σ.
• The two methods are asymptotically equivalent. Under some regularity

conditions, the estimates are asymptotically normal.
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Building a VAR(p) Model II

• Model checking for AR(p) models can be achieved via AIC or other criteria.
• Treating a properly built model as the true model, one can apply the same

techniques as those in the univariate analysis to produce forecasts and
standard deviations of the associated forecast errors.

• If rt is weakly stationary, then the l-step-ahead forecast rh(l) converges to
its mean vector µ as the forecast horizon l increases and the covariance
matrix of its forecast error converges to the covariance matrix of rt

• R Example.
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Vector moving average models I

• A vector moving-average model of order q, or VMA(q), is in the form

rt = θ0 + at ´Θ1at´1 ´ ...´Θqat´q

= θ0 + (1´Θ1B´Θ2B
2 ´ ...´ΘqB

q)at

= θ0 +Θ(B)at

• Similar to the univariate case, VMA(q) processes are weakly stationary
provided that the covariance matrix Σ of at exists.

• Taking expectation of the model, we obtain that

E(rr) = θ0

• Let r̃t = rt ´ θtbe the mean-corrected VMA(q) process, we have
1 Cov(rt,at) = Σ
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Vector moving average models II

2 The cross covariance matrix is

Γ0 = Σ+Θ1ΣΘ
1
1 + ... +ΘqΣΘ

1
q

Γl =

#

0, for l ą q
řq

j=lΘjΣΘj´l 1 ď l ď q

3 The cross-correlation matrices ρl = 0 if l ą q.

• A bivariate VMA(1) model
• the current return series rt only depends on the current and past shocks.

Therefore, the model is a finite-memory model.
• the concurrent correlation between rit is the same as that between ait . The

previous classification can be generalized to a VMA(q) model.
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Estimating VMA models I

• Unlike the VAR models, estimation of VMA models is much more involved.
• For the likelihood approach, there are two methods available. The first is the

conditional-likelihood method that assumes that at = 0 for t ď 0.
• The second is the exact-likelihood method that treats at with t ď 0 as

additional parameters of the model.

• Conditional MLE
• The conditional-likelihood method assumes that a0 = 0. Under such an

assumption and rewriting the model as

at = rt ´ θ0 +Θat´1

• Then we can compute the shock at recursively, a1 = ..., a2 = ...
• Consequently, the likelihood function of the data becomes

f(r1, ..., rT |θ0,Θ1,Σ) =
T

ź

t=1

1
(2π)k/2|Σ|1/2 exp

"

´
1
2a

1
tΣ
´1at

*

• Exact MLE
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Estimating VMA models II
• For the exact-likelihood method, a0 is an unknown vector that must be

estimated from the data to evaluate the likelihood function.
• Given initial estimates of θ0,Θ1,Σ, one use the recursive form to derive an

estimate of a0

a1 = r̃1 +Θa0

...
aT = r̃T +Θr̃T´1 + ... +ΘT´1r̃T +ΘTa0

• Thus, a0 is a linear function of the data given the parameters. The above
equation can then be rewritten assume

r˚1 = ´Θa0 + a1

r˚2 = ´Θ2a0 + a2

...
r˚T = ´ΘTa0 + aT
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Estimating VMA models III

• This is in the form of a multiple linear regression with parameter vector a0.
The ordinary least-squares method can be used to obtain an estimate of a0.

• Using the estimate a0 , now we can compute the shocks at recursively
• The whole process is then repeated until the estimates converge. This iterative

method to evaluate the exact-likelihood function applies to the general
VMA(q) models.

• The exact-likelihood method requires more intensive computation than the
conditional-likelihood approach does. But it provides more accurate parameter
estimates
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Vector ARMA models I

• Univariate ARMA models can also be generalized to handle vector time
series. The resulting models are called VARMA models.

• The generalization, however, encounters some new issues that do not occur
in developing VAR and VMA models. One of the issues is the identifiability
problem. Unlike the univariate ARMA models, VARMA models may not be
uniquely defined.

[
r1t
r2t

]
´

[
0.8 ´2
0 0

] [
r1,t´1
r2,t´1

]
=

[
a1t
a2t

]
´

[
´0.5 0

0 0

] [
a1,t´1
a2,t´1

]
is identical to

[
r1t
r2t

]
´

[
0.8 ´2 + η
0 ω

] [
r1,t´1
r2,t´1

]
=

[
a1t
a2t

]
´

[
´0.5 η

0 ω

] [
a1,t´1
a2,t´1

]
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Vector ARMA models II

• Such an identifiability problem is serious because, without proper constraints,
the likelihood function of a vector ARMA(1,1) model for the data is not
uniquely defined, resulting in a situation similar to the exact multicollinearity
in a regression analysis. This type of identifiability problem can occur in a
vector model even if none of the components is a white noise series.

• In the time series literature, methods of structural specification have been
proposed to overcome the identifiability problem.

• We do not discuss the detail of structural specification here because VAR and
VMA models are sufficient in most financial applications. When VARMA
models are used, only lower order models are entertained [e.g., a
VARMA(1,1) or VARMA(2,1) model] especially when the time series involved
are not seasonal.

• Estimation of a VARMA model can be carried out by either the conditional or
exact maximum-likelihood method.

• R Example
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Suggested Reading

• Tsay (2010) Chapter 8
• Tsay (2014) Chapter 2, 3, 4
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