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Today we are going to learn...

1 Moving average process

2 Autoregressive process

3 Autoregressive moving average process

4 ARIMA model estimation

5 Time series forecasting
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Infinite moving average process
• Recall the stable linear process we mentioned in stationary time series

yt = µ+
∞
ÿ

i=0
ψiεt´i

• We can rewrite it in terms of the backshift operator (B) (same as lag
operator) ,

yt = µ+
∞
ÿ

i=0
ψiεt´i = µ+

∞
ÿ

i=0
ψiB

iεt = µ+ Ψ(B)εt

• This is called the infinite moving average.
• Some properties

•
ř∞
i=0ψ

2
i ă∞

• Wold’s decomposition theorem: any nondeterministic weakly stationary
time series yt can be represented as the above form. (i.e. a stationary time
series can be seen as the weighted sum of the present and past random
“disturbances”.)

• The above means we only need to find ψ.
• The infinite moving average does not help us much in our modeling and

forecasting efforts as it implicitly requires the estimation of the infinitely many
weights.
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Finite moving average process
• The finite moving average, MA(q) is a special case of infinite moving average

when we require
• ψ0 = 0 (by convention)
• i is from 0 to q where q ă t
• εt is the white noise.
• The expression is usually written as

yt = µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q

• A MA(q) process is always stationary regardless of values of the weights.

E(yt) =E(µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q) = µ
Var(yt) =Var(µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q)

=Var(ε1) + θ
2
1Var(εt´1) + ... + θ2

pVar(εt´p)

=(1 + θ2
1 + ... + θ2

p)σ
2

• The interpretation of MA process: At any given time, of the infinitely many
past disturbances, only a finite number of those disturbances ”contribute” to
the current value of the time series.
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Finite moving average process
• The autocovariance function for k ă q

γy(1) = Cov(yt,yt+1) = Cov(µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q,
µ+ εt+1 ´ θ1εt ´ ...´ θqεt+1´q)

= σ2(´θ1 + θ1θ2 + ... + θq´1θq)

γy(2) = Cov(yt,yt+2) = Cov(µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q,
µ+ εt+2 ´ θ1εt+1 ´ ...´ θqεt+2´q)

= σ2(´θ2 + θ1θ3 + ... + θq´2θq)

...
γy(k) = Cov(yt,yt+k) = Cov(µ+ εt ´ θ1εt´1 ´ ...´ θqεt´q,

µ+ εt+k ´ θt+kεt+k´1 ´ ...´ θqεt+k´q)
= σ2(´θk + θ1θk+1 + ... + θq´kθq)

• The autocovariance function for k ě q is zero. The ACF for MA model “cuts
off” (decays) after lag q. (We can use it to identify q in application)

• The autocorrelation function for k ă q (why?)

ρy(k) =
γy(k)

γy(0)
=
´θk + θ1θk+1 + ... + θq´kθq

1 + θ2
1 + ... + θ2

p
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The first-order moving average process

• When q = 1, we have the special case called MA(1) model

yt = µ+ εt ´ θ1εt´1

• The autocovariance function is

γy(0) = σ2(1 + θ2
1), γy(1) = ´θ1σ

2, γy(k) = 0

• The autocorrelation function is

ρy(1) =
´θ1

1 + θ2
1

, ρy(k) = 0 for k ą 1

which indicates
• the autocorrelation function cuts off after lag 1, and
• the first lag autocorrelation in MA(l) is bounded as |ρy(1)| ď 1/2.

• R example with MA(1) yt = 40 + εt + 0.8εt´1
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The second-order moving average process

• When q = 2, we have the special case called MA(2) model

yt = µ+ εt ´ θ1εt´1 ´ θ2εt´2

• The autocovariance function is

γy(0) = σ2(1+θ2
1+θ

2
2), γy(1) = (´θ1+θ1θ2)σ

2, γy(2) = σ2(´θ2), γy(k) = 0

• The autocorrelation function is

ρy(1) =
´θ1 + θ1θ2
1 + θ2

1 + θ
2
2

, ρy(1) =
´θ2

1 + θ2
1 + θ

2
2

, ρy(k) = 0 for k ą 2

which indicates
• the autocorrelation function cuts off after lag 2

• R example with MA(2) yt = 40 + εt + 0.7εt´1 ´ 0.28εt´2
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First-order autoregressive process
• Let’s consider a simple version of MA process

yt = µ+ εt + φεt´1 + φ
2εt´2 + ...

• From the above, we also have

yt´1 = µ+ εt´1 + φεt´2 + φ
2εt´3 + ...

• Then we can combine the two together and the following (why?)

yt = µ´ φµ+ φyt´1 + εt

= δ+ φyt´1 + εt

where δ = (1´ φ)µ and |φ| ă 1.
• The process is called a first-order autoregressive process.
• Because the equation can be seen as a regression of yt on yt´1 and hence

the term autoregressive process.
• The assumption of |φ| ă 1 that is made to make the weights decay

exponentially in time.
• Question: Given an AR(1) expression, can you write the infinite MA

representation down in terms all ε?
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First-order autoregressive process
• The AR(1) process is stationary if |φ| ă 1.
• The mean of a stationary ar(1) process is (Why?)

E(yt) = µ =
δ

1´ φ

• The variance is σ2/(1´ φ2) due to the fact that

Var(yt) = Var(µ+ εt + φεt´1 + φ
2εt´2 + ...)

= σ2(1 + φ2 + φ4 + φ6 + ...)

=
σ2

1´ φ2

Or under the stationary one may verify this as

Var(yt) = Var(δ+ φyt´1 + εt)

= φ2Var(yt´1) + Var(εt)

= φ2Var(yt) + σ
2
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First-order autoregressive process

• The autocovariance function of a stationary AR(1)

γ(k) = σ2φk
1

1´ φ2 , for k = 0, 1, ...

• Correspondingly, the autocorrelation function for a stationary AR(l) process is

ρ(k) = φk, for k = 0, 1, ...

• The ACF for a stationary AR(1) process has an exponential decay form.
• R example: AR(1) with yt = 8 + 0.8yt´1 + εt

• Take home questions: Verify the two results (Hint: use the infinite MA
representation).
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Random Walk

• A special case of AR(1) process is the random Walk

yt = µ+ yt´1 + εt

• The intercept µ is called the drift. If µ = 0, it is called random walk without
drift. If µ =‰ 0, it is called random walk without drift.

• A random walk is not stationary.
• Examples
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Figure: Random Walk in 2D
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Figure: Random Walk in 3D
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Second-order autoregressive process

• We can naturally extend the AR(1) to AR(2)

yt = δ+ φ1yt´1 + φ2yt´2 + εt

• This can be represented in the backshift operator

(1´ φ1B´ φ2B
2)yt = δ+ εt

• We will see the advantage of this rewriting
• Let Φ(B) = 1´ φ1B´ φ2B

2 ´ ...´ φpBp
• Let Ψ(B) =

ř∞
i=0ψiB

i = Φ(B)´1. Thus Ψ(B)Φ(B) = 1
• Now we apply Φ(B)´1 to both sides of Φ(B)yt = δ+ εt

Φ(B)Φ(B)´1yt = δ+ εt

yt = Φ(B)´1δ+Φ(B)´1εt

= µ+ Ψ(B)εt

= µ+ (
ÿ∞
i=0
ψiB

i)εt
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Second-order autoregressive process
• According to Wold’s decomposition theorem, we would like to find φ
• We start from the equality

Ψ(B)Φ(B) = 1

(1´ φ1B´ φ2B
2)(

ÿ∞
i=0

ψiB
i) = 1

ψ0 + (ψ1 ´ φ1ψ0)B+ (ψ2 ´ φ1ψ1 ´ φ2ψ0)B
2+

... + (ψj ´ φ1ψj´1 ´ φ2ψj´2)B
j + ... = 1

implies

ψ0 = 1
ψ1 ´ φ1ψ0 = 0

...
ψj ´ φ1ψj´1 ´ φ2ψj´2 = 0

...

• Why?
• R example: ARMAtoMA(ar = numeric(), ma = numeric(), lag.max)
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Second-order autoregressive process

• Notice that the ψj satisfy the second-order linear difference equation.
• It be expressed as the solution to this equation in terms of the two roots of

the associated polynomial

m2 ´ φ1m´ φ2 = 0

• If the absolute value of all the roots are smaller than one, then the AR(2)
model is stationary.

• This is the way to test if an AR process is stationary or not.
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Second-order autoregressive process
• Under the conditions for the stationarity of an AR(2) time series
• the mean:

E(yt) = δ+ φ1E(yt´1) + φ2E(yt´2) + E(εt)

= δ+ φ1E(yt) + φ2E(yt)

ñ µ = E(yt) =
δ

1´ φ1 ´ φ2

• the autocovariance function
γ(k) = Cov(yt,yt´k) = Cov(δ+ φ1yt´1 + φ2yt´2 + εt,yt´k)

= φ1Cov(yt´1,yt´k) + φ2Cov(yt´2,yt´k) + Cov(εt,yt´k)

= φ1γ(k´ 1) + φ2γ(k´ 2) +
#

σ2, if k = 0
0, elsewhere

which is called the Yule-Walker equation.
• Similarly, the autocorrelation function

ρ(k) = φ1ρ(k´ 1) + φ2ρ(k´ 2), for k = 2, 3,...

• R example with yt = 4 + 0.4yt´1 + 0.5yt´2 + εt
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The AR(p) process

• The AR model of order p is of the form

yt = δ+ φ1yt´1 + φ2yt´2 + ... + φpyt´p + εt

• Or we use the backshift operator representation

(1´ φ1B´ φ2B
2 ´ ...´ φpBp)yt = δ+ εt

Φ(B)yt = δ+ εt

• The stationary condition: if the roots of the associated polynomial are less
than one in absolute value

mp ´ φ1m
p´1 ´ φ2m

p´2 ´ ...´ φp = 0
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The AR(p) process
• Under the conditions for the stationarity of an AR(2) time series
• the mean:

µ = E(yt) =
δ

1´ φ1 ´ ...´ φp
• the autocovariance function

γ(k) = Cov(yt,yt´k)

=

p
ÿ

i=1
φiγ(k´ i) +

#

σ2, if k = 0
0, elsewhere

• Similarly, the autocorrelation function (Yule-Walker equations or pth-order
linear difference equations)

ρ(k) =

p
ÿ

i=1
φiρ(k´ i), for k = 1,2,...

• The ACF for an AR(p) model can be found through the p roots of the
associated polynomial

ρ(k) = c1m
k
1 + c2m

k
2 + ... + cpmkp

for k = 1, 2, ...
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Partial Autocorrelation Function

• We already know that
• The ACF is expected to ”cut off” after lag q for MA(q) model.
• The ACF for AR(p) process will most likely have a exponential decay but does

not tell us what the lag p is. the partial autocorrelation function (PACF) will
do it for us.

• The partial correlation: the correlation between two variables after being
adjusted for a common factor that may be affecting them.

• The partial correlation between X and Y after adjusting for Z is defined as

Corr(X´ X̂, Y ´ Ŷ)

where X̂ = a1 + b1Z and Ŷ = a2 + b2Z
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Partial Autocorrelation Function

• The partial autocorrelation function between yt and yt´k is the
autocorrelation between yt and yt´k after adjusting for yt´1,
yt´2,...,yt´k+1 and yt´k.

• For an AR(p) model the partial autocorrelation function between yt and
yt´k for k ą p should be equal to zero.

• This can be used to detect the p in AR process
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Partial Autocorrelation Function
• Recall the Yule-Walker equations for the ACF of AR(p) process

ρ(k) =

p
ÿ

i=1
φiρ(k´ i), for k = 1,2,...

which can be written in terms of matrices

ρk = Pkφk

where ρk = [ρ(1), ..., ρ(k)] 1, φk = [φ1k, ...,φkk] 1 and Pk is the matrix for
all the lagged correlations.

• For any given k, k = 1, 2, ... the last coefficient φkk is called the partial
autocorrelation of the process at lag k.

• The PACF can be used in identifying the order of an AR process similar to
how the ACF can be used for an MA process.

• The PACF for MA process exhibits an exponential decay pattern.
• For sample calculations, φ̂kk, the sample estimate of φkk, is obtained by

using the sample ACF.
• R example PACF for yt = 4 + 0.4yt´1 + 0.5yt´2 + εt

Feng Li (SAM.CUFE.EDU.CN) Time Series Analysis 22 / 49



Invertibility of MA Models

• The MA(q) process is said to be invertible if it has an absolutely summable
infinite AR representation.

• Consider the MA(q) process

yt = µ+ (1´
ÿq

i=1
θjB

i)εt

= µ+Φ(B)εt

• If we multiply both sides with Φ(B)´1, we have

Φ(B)´1yt = Φ(B)´1µ+ εt

Ψ(B)yt = δ+ εt

(1´
ÿ∞
i=1

ψiB
i)yt = δ+ εt

by assuming Φ(B)Ψ(B) = 1 where the last equation is the infinite AR
representation of an MA(q) process
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Invertibility of MA Models

• The ψi can be obtained from

Φ(B)Ψ(B) = 1

(1´
ÿq

i=1
θjB

i)(1´
ÿ∞
i=1

ψiB
i) = 1

• Again this can be checked through the roots of the associated polynomial

mq ´ θ1m
q´1 ´ θ2m

q´2 ´ ...´ θq = 0

• If all the roots are less than one in absolute value, then MA(q) is said to have
an infinite AR representation

• R example (same as ARÑ MA, but swap ar and ma parameters.
Why?):
ARMAtoMA(ar = ma.numeric(), ma = ar.numeric(), lag.max)
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ARMA(p,q)

• ARMA model is mixed with autoregressive model and moving average model

yt = δ+

p
ÿ

i=1
φiyt´i + εt ´

q
ÿ

i=1
θiεt´i

yt ´

p
ÿ

i=1
φiyt´i = δ+ εt ´

q
ÿ

i=1
θiεt´i

(1´
p

ÿ

i=1
φiB

i)yt = δ+ (1´
q

ÿ

i=1
θiB

i)εt

Φ(B)yt = δ+Θ(B)εt

which is called the ARMA(p,q) model.
• The stationary condition of ARMA(p,q) is same as AR(p) model (Why?).

mp ´ φ1m
p´1 ´ φ2m

p´2 ´ ...´ φp = 0
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ARMA(p,q)

• Under the stationary condition, ARMA(p,q) has an infinite MA
representation by multiplying Φ(B)´1 to both sides of

Φ(B)yt = δ+Θ(B)εt

yt = Φ(B)´1δ+Φ(B)´1Θ(B)εt

yt = µ+Φ(B)´1Θ(B)εt

• The invertibility of an ARMA process is related to the MA component and
can be checked through the roots of the associated polynomial

mq ´ θ1m
q´1 ´ θ2m

q´2 ´ ...´ θq = 0
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ARMA(p,q)

• As in the stationarity and invertibility conditions, the ACF and PACF of an
ARMA process are determined by the AR and MA components. respectively

• It can be shown that the ACF and PACF of an ARMA(p, q) both exhibit
exponential decay and/or damped sinusoid patterns.

• The identification of the order of the ARMA(p, q) model is relatively more
difficult.
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ARIMA(p,d,q)

• An autoregressive integrated moving average (ARIMA) process of order
p, d and q (ARIMA(p,d,q))

Φ(B)(1´ B)dyt = δ+Θ(B)εt

• It can be viewed a ARMA model with ωt

Φ(B)ωt = δ+Θ(B)εt

where ωt = (1´ B)dyt
• Question: write down the expression of the flowing models

• ARIMA(1,1,1)
• ARIMA(0,1,1)
• ARIMA(1,1,0)
• ARIMA(0,2,0)
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Estimate an ARIMA model
ï The three steps to build an ARIMA model

• A tentative model of the ARIMA class is identified through analysis of
historical data.

• The unknown parameters of the model are estimated. (what are the
unknown parameters in ARIMA models?)

• Through residual analysis, diagnostic checks are performed to determine the
adequacy of the model, or to indicate potential improvements. (same as our
usual linear regression model)
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Model identification
ï What model should be used? (AR, MA, ARMA, or
ARIMA?)

• It is a piece of experience work.
• Use the sample ACF and PACF.
• The unit root test can also be performed to make sure that the differencing

is indeed needed.
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Model identification I
ï Is the time series stationary ?

• The unit root test tests whether a time series variable is non-stationary
using an autoregressive model. A well-known version is the Dickey-Fuller
type test

• The null hypothesis β = 1 against the alternative hypothesis of β ă 1.
• The regression model

xt = ct + βxt´1 + δ1∆xt´1 + ¨ ¨ ¨+ δp´1∆xt´p+1 + εt,

• The intuition: If the series is not integrated, then the lagged level of the
series (xt´1) will provide no relevant information in predicting the change in
xt besides the one obtained in the lagged changes.

• If the null hypothesis of β = 1 is rejected, there is no unit root presented.
• The augmented Dickey-Fuller (ADF) unit-root test statistic

ADF =
β̂´ 1
SE(β̂)
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Model identification II
ï Is the time series stationary ?

• Example 2.2 Consider the log series of U.S. quarterly GDP from 1947.I to
2008.IV. The series exhibits an upward trend, showing the growth of the U.S.
economy, and has high sample serial correlations; see the lower left panel of
Figure 2.11. The first differenced series, representing the growth rate of U.S.
GDP and also shown in Figure 2.11, seems to vary around a fixed mean level,
even though the variability appears to be smaller in recent years. To confirm
the observed phenomenon, we apply the ADF unit-root test to the log series.
Based on the sample PACF of the differenced series shown in Figure 2.11, we
choose p = 10.
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Parameter Estimation I

• Partial likelihood
Consider a time series Yt, t = 1, ...,N , with a joint density ftheta(y1, ...,yt)
parametrized by a vector parameter θ. In addition, suppose there is some
auxiliary information AI known throughout the period of ob- servation. Then
the likelihood is a function of θ defined by the equation

fθ(y1, ...,yt) = fθ(y1|AI)
N

ź

t=2
fθ(yt|y1, ...,yt´1,AI)

• Due to the Markov assumption the joint density can be factored as

fθ(y1, ...,yt) = fθ(y1|AI)
N

ź

t=2
fθ(yt|yt´1,AI)
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Parameter Estimation II

• Ignoring the first factor fθ(y1|AI), as it is independent of N , inference
regarding θ can be based on the product term. This is an example of
conditional likelihood resulting from dependent observations expressed as a
product of conditional densities.

• The factorization (1.3), without fθ(y1|AI), has some desirable properties
worth keeping in mind, such as the fact that the dimension of the factors, as
well as that of θ , is fixed regardless of N , and that the derivative with
respect to θ of the logarithm of the preceding equation is a zero mean square
integrable martingale.

• Most ARIMA models are nonlinear models.
• Methods such as methods of moments, maximum likelihood, and least

squares that can be employed to estimate the parameters.
• Software does this for us.
• R function: arima(y, order = c(p, d, q))
• ARIMA estimation example:
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Simulate an ARIMA model

• Data generating process (DGP) is a way to sample finite samples from the
theoretical model for given assumptions through computer simulation
procedures.

• It is an very important tool in statistics to connect the model and data
realization.

• DGP is the opposite routine of modeling estimation.
• Model estimation: the data are known, estimated the parameters and obtain

the residuals
• DGP: The parameters are known, simulate error term and the data based on

model assumptions.
• We already studies how to simulate data from linear models. AR, MA models.
• R function:

arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma =
c(-0.2279, 0.2488)))
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Diagnostic Checking
• Given an ARIMA model

yt = δ+

p
ÿ

i=1
φiyt´i + εt ´

q
ÿ

i=1
θiεt´i

where yt has be already differenced (the integrated part) .
• The residual is then

ε̂t = yt ´ δ̂´

p
ÿ

i=1
φ̂iyt´i +

q
ÿ

i=1
θ̂iεt´i

• Heteroscedasticity and autocorrelations check should then be the same as the
usual way in linear models.

• Durbin-Waston h test should be used for detecting residual autocorrelations
where the relation between the Durbin-Waston h statistic and
Durbin-Waston d statistic

h =

(
1´ 1

2d
)d

T

1´ T ¨yVar(pβ1 )
,
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ARIMA model forecasting I

• The best forecast in the mean square sense is the conditional expectation of
YT+τ given current and previous observations

ŷT+τ = E(yT+τ|yT ,yT´1, ...)

• So in an ARIMA (p,d,q) process at time T + τ, we have

ŷT+τ = δ+

p+d
ÿ

i=1
φiyT+τ´i + εT+τ ´

q
ÿ

i=1
θiεT+τ´i

• And the predictive variance is

σ2
τ´1
ÿ

i=0
ψ2
i

where ψi are the coefficients of the moving average representation.
• It should be noted that the variance of the forecast error gets bigger with

increasing forecast lead times τ.

Feng Li (SAM.CUFE.EDU.CN) Time Series Analysis 38 / 49



ARIMA model forecasting II
• We can then obtain the 100(1´ α) percent prediction intervals for the future

observations from

P(ŷT+τ ´ zα/2σ(τ) ă yT+τ ă ŷT+τ + zα/2σ(τ)) = 1´ α

• The share example A share follows the model:

yt = 5 + 0.8yt´1 + εt

where εt is white noise with known variance σ2 = 2. If today’s value is CNY
8. determine the probability that the share will exceed CNY 8 after 3 time
steps, that is the probability that yt+3 ą yt given that yt = 8.

• We can write yt+3 in the form of yt, that is

yt+3 = 5 + .8yt+2 + at+3

= 5 + .8 (5 + .8yt+1 + at+2) + at+3

= 5 + .8 (5 + .8 (5 + .8yt + at+1) + at+2) + at+3

= 12.2 + .512yt + (.64at+1 + .8at+2 + at+3)

Given yt = 8, yt+3 = 16.296 + (.64at+1 + .8at+2 + at+3)
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ARIMA model forecasting III
• Since at

iid
„ N(0, 2) (because of the white noise assumption), yt+3 is till

normal distributed with mean

µ = E (16.296 + (.64at+1 + .8at+2 + at+3)) = 16.296

• and variance

σ2 = Var (16.296 + (.64at+1 + .8at+2 + at+3))

= .642Var (at+1) + .82Var (at+2) + Var (at+3)

= .642 ¨ 2 + .82 ¨ 2 + 2 = 4.0992

• We can have the conditional probability

P (yt+3 ą yt|yt = 8) = P (yt+3 ą 8) = P
(
yt+3 ´ µ

σ
ą

8´ µ
σ

)
= P

(
yt+3 ´ µ

σ
ą

8´ 16.296
?

4.0992

)
= P

(
yt+3 ´ µ

σ
ą ´4.097502

)
« 1
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ARIMA model forecasting IV
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ARIMA(p,d,q)

• Why ARIMA(p,d,q)? Differencing can transform a nonstationary time series
to stationary.

• In most applications first differencing (d = 1) and occasionally second
differencing (d = 2) would be enough to achieve stationarity.

• Differencing is not the only tool to transform to stationary. Taking the
logarithm of the original series will be useful in achieving stationarity.
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Seasonal Model I
• Some financial time series such as quarterly earnings per share of a company

exhibits certain cyclical or periodic behavior. Such a time series is called a
seasonal time series.

• Log transformation is commonly used in analysis of financial and economic
time series.

• In general, for a seasonal time series yt with periodicity s, seasonal
differencing means

∆syt = yt ´ yt´s = (1´ Bs)yt
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Seasonal Model II
• Example 2.3 ACF in seasonal time series
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Seasonal Model III
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Seasonal Model IV

• Example 2.4
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Take home questions

• How do you detect if a process yt is from AR(p) or MA(q) by examining and
ACF and PACF?

• What phenomena do AR(p) and MA(q) describe really?
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Computer lab

• Data: S&P100 from finance.yahoo.com
• Plot time series for returns (Hint: ts package)
• Compute ACF and PACF
• Stationary check using Dickey-Fuller test (Hint: tseries)
• Fit an ARIMA(p,d,q) model.
• Explain your model.
• Carry out one-step and two-step ahead forecasting and make comparison.
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Suggested Reading

• Tsay (2010) Chapter 2
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