
ARTICLE IN PRESS
Journal of Econometrics 134 (2006) 341–371
0304-4076/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jeconom
Analysis of high dimensional multivariate
stochastic volatility models

Siddhartha Chiba, Federico Nardarib, Neil Shephardc,�

aJohn M. Olin School of Business, Washington University, St Louis, MO 63130, USA
bW.P. Carey School of Business, Arizona State University, Tempe, AZ 85287, USA

cNuffield College, University of Oxford, Oxford OX1 1NF, UK

Available online 22 August 2005
Abstract

This paper is concerned with the Bayesian estimation and comparison of flexible,

high dimensional multivariate time series models with time varying correlations. The

model proposed and considered here combines features of the classical factor model with

that of the heavy tailed univariate stochastic volatility model. A unified analysis of the

model, and its special cases, is developed that encompasses estimation, filtering and

model choice. The centerpieces of the estimation algorithm (which relies on MCMC

methods) are: (1) a reduced blocking scheme for sampling the free elements of the

loading matrix and the factors and (2) a special method for sampling the parameters

of the univariate SV process. The resulting algorithm is scalable in terms of series and

factors and simulation-efficient. Methods for estimating the log-likelihood function and

the filtered values of the time-varying volatilities and correlations are also provided.

The performance and effectiveness of the inferential methods are extensively tested using

simulated data where models up to 50 dimensions and 688 parameters are fit and studied.

The performance of our model, in relation to various multivariate GARCH models, is

also evaluated using a real data set of weekly returns on a set of 10 international stock indices.

We consider the performance along two dimensions: the ability to correctly estimate

the conditional covariance matrix of future returns and the unconditional and
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conditional coverage of the 5% and 1% value-at-risk (VaR) measures of four pre-defined

portfolios.
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1. Introduction

Two classes of models, ARCH and stochastic volatility (SV), have emerged as the
dominant approaches for modeling financial volatility (Bollerslev et al., 1994;
Ghysels et al., 1996). For the most part, the literature has dealt with univariate
processes despite the need for multivariate models in areas such as asset pricing,
portfolio analysis, and risk management. Although some multivariate models of
volatility have been proposed, inference is restricted to specifications involving only a
few variables, largely because of the proliferation of parameters in high dimensions.
As a consequence, multivariate models of time-varying volatility and correlations
have found limited applications to problems of practical relevance in finance. A
major aim of this paper is to overcome these difficulties and demonstrate a unified
Bayesian fitting and inference framework for truly high dimensional multivariate SV
models.

In previous work within the ARCH tradition, multivariate models of volatility
have been discussed by Bollerslev et al. (1988), Diebold and Nerlove (1989), Engle
et al. (1990) and King et al. (1994). Unfortunately, these generalizations are
parameter rich and difficult to estimate due to complicated constraints on the
parameter space. More tractable versions of multivariate ARCH models (Bollerslev
et al., 1994, pp. 3002–3010) are not generally capable of modeling the complexities of
the data (e.g. Bollerslev, 1990 assumes that the conditional correlations amongst the
series are constant over time). Engle and Sheppard (2001) have tried to overcome
this problem but only two parameters index the time-varying multivariate
correlation matrix.

The model proposed and considered here is a generalization of the univariate
stochastic volatility model. It combines features of the classical factor model with
those of the heavy tailed univariate stochastic volatility model. Models along these
lines have been discussed by Harvey et al. (1994), Jacquier et al. (1995), Kim et al.
(1998), Pitt and Shephard (1999b), and Aguilar and West (2000) but the models in
these papers are rather special (for example, not all model heavy tailed errors and
none include jumps). In addition, the estimation approaches developed in these
papers (which simulate the posterior distribution by Markov chain Monte Carlo
(MCMC) methods) are not scalable in the dimension of the model. This is primarily
due to two aspects of the previous algorithms. The first is related to the one-at-a time
sampling of the latent volatilities, which is known to produce poor mixing even in
univariate models (Kim et al., 1998). The second is related to the sampling of the
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latent factors and the associated parameters in the loading matrix. Specifically, given
the remaining unknowns in the model, the loading matrix is sampled conditioned on
the factors, which is followed by the sampling of the latent factors conditioned on
the loading matrix. This feature also tends to produce poor mixing.

In this paper, we propose a general multivariate SV model with heavy tailed errors
and jumps. We develop a unified analysis of the model, and its special cases, that
encompasses estimation, filtering and model choice. The centerpieces of our MCMC
based estimation algorithm are: (1) a joint sampling of the latent SV processes and
(2) the sampling of the free elements of the loading matrix marginalized over the
factors. The performance and effectiveness of our estimation method is tested in a
large-scale study where models up to 50 dimensions and 688 parameters are fit and
studied. The methods are shown to be scalable in terms of series and factors and
simulation-efficient. Multivariate volatility models of this size and complexity have
never before been estimated successfully.

The rest of the paper is organized as follows. In Section 2, we present the model
and our approach for simulating the posterior distribution by MCMC methods. The
problem of model comparisons is taken up in Section 3 where a method for
estimating the log-likelihood function and the filtered values of the time-varying
volatilities and correlations is also provided. In Section 4, we provide a detailed
simulation study of the performance of our estimation and model choice procedures.
In Section 5 we apply our approach to international equity market data. We assess
the forecasting performance of the MSV specification in relation to alternative
models including multivariate GARCH models. We consider the performance along
two dimensions: the ability to correctly estimate the conditional covariance matrix of
future returns and the unconditional and conditional coverage of the 5% and 1%
value-at-risk (VaR) measures of four pre-defined portfolios. We conclude with some
brief remarks in Section 6.
2. Model and estimation

2.1. Model

We begin by specifying a new and flexible multivariate SV model that permits both
series-specific jumps at each time, and student-t innovations with unknown degrees
of freedom. Let yt ¼ ðy1t; . . . ; yptÞ

0 denote the p observations at time t ðtpnÞ and
suppose that conditioned on k unobserved factors f t ¼ ðf 1t; . . . ; f ktÞ

0 and p

independent Bernoulli ‘‘jump’’ random variables qt, we have

yt ¼ Bf t þ Ktqt þ ut, (1)

where B is a matrix of unknown parameters (subject to the identifying restrictions
bij ¼ 0 for j4i and bii ¼ 1 for ipk), Kt ¼ diagfk1t; . . . ; kptg are the jump sizes, and ut

is a vector of innovations. Assume that each element qjt of qt takes the value one with
probability kj and the value zero with probability 1� kj, and that each element ujt of
ut follows an independent student-t distribution with degrees of freedom nj42,
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which we express in hierarchical form as

ujt ¼ l�1=2jt ejt; ljt �
i:i:d:

gamma
nj

2
;
nj

2

� �
; t ¼ 1; 2; . . . ; n, (2)

where

et

f t

 !
jV t;Dt;Kt; qt�Npþk 0;

Vt 0

0 Dt

 !( )
are conditionally independent Gaussian random vectors. The time-varying variance
matrices V t and Dt are taken to depend upon unobserved random variables (log-
volatilities) ht ¼ ðh1t; . . . ; hpþk;tÞ in the form

Vt ¼ V tðhtÞ ¼ diagfexpðh1tÞ; . . . ; expðhptÞg : p� p,

Dt ¼ DtðhtÞ ¼ diagfexpðhpþ1;tÞ; . . . ; expðhpþk;tÞg : k � k, (3)

where each hjt follows an independent three-parameter ðmj ;fj ;sjÞ stochastic volatility
process

hjt � mj ¼ fjðhjt�1 � mjÞ þ sjZjt; Zjt �
i:i:d:

Nð0; 1Þ. (4)

Our model specification is completed by assuming that the variables zjt ¼ lnð1þ kjtÞ,
jpp, are distributed as Nð�0:5d2j ; d

2
j Þ, where d ¼ ðd1; . . . ; dpÞ are unknown

parameters. This assumption is similar to that made by Andersen et al. (2002) in a
different context and models the belief that the expected value of kjt is zero.

To understand the size of this model in terms of parameters and latent variables,
let b denote the free elements of B after imposing the identifying restrictions. Then
there are pk � ðk2

þ kÞ=2 elements in b, 3ðpþ kÞ parameters yj ¼ ðfj ;mj ;s
2
j Þ, jpp, in

the autoregressive process of fhjtg, p degrees of freedom n ¼ ðn1; . . . ; npÞ, p jump
intensities k ¼ ðk1; . . . ;kpÞ, and p jump variances d ¼ ðd1; . . . ; dpÞ. If we let c ¼
ðb; y1; . . . ; ypþk; n; d; kÞ denote the entire list of parameters, then the dimension of c is
688 when p ¼ 50 and k ¼ 8, as in one of our models below. Furthermore, the model
contains nðpþ kÞ latent volatilities fhtg that appear non-linearly in the specification
of V t and Dt, 2np latent variables fqtg and fktg associated with the jump component,
and np scaling variables fltg.

In the sequel, we refer to our model as the multivariate stochastic volatility jump
model with student-t errors, or MSVJt for short. We use the acronyms MSVt to
denote the model without jumps, MSVJ to denote the model with jumps and
Gaussian errors, and MSV to denote the model with no jumps and Gaussian errors.
We compare and contrast all four models in our empirical exercises.

2.2. Preliminaries

If we let Ft�1 denote the history of the fytg process up to time t� 1, and
pðht; lt;Kt; qtjFt�1;cÞ the density of the latent variables ðht; lt;Kt; qtÞ conditioned on
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ðFt�1;cÞ, then the likelihood function of c given the data y ¼ ðy1; . . . ; ynÞ is

pðyjcÞ ¼
Yn

t¼1

Z
pðytjht; lt;Kt; qt;BÞpðht; lt;Kt; qtjFt�1;cÞdht dlt dKt dqt

¼
Yn

t¼1

Z
NpðytjKtqt;OtÞpðht; lt;Kt; qtjFt�1;cÞdht dlt dKt dqt, ð5Þ

where Npð�j�; �Þ is the multivariate normal density function, Ktqt is the mean of yt

marginalized over f t,

V�t ¼ V tðhtÞ � diagðl�11t ; . . . ; l
�1
pt Þ and Ot ¼ V�t þ BDtðhtÞB

0

is the marginalized variance of yt depending on the latent variables ht, lt and on the
loading matrix B, and the symbol � denotes element-by-element multiplication. It is
not difficult to see that neither pðht; lt;Kt; qtjFt�1;cÞ nor the integral of
NpðytjKtqt;OtÞ over ðht; lt;Kt; qtÞ are available in closed form.

We utilize MCMC methods to develop a practical Bayesian estimation approach
for this model; Chib and Greenberg (1996) and Chib (2001) provide extensive
reviews of these methods. In the MCMC approach, the posterior distribution is
sampled by simulation methods and the draws generated from the simulation are
used to summarize the posterior distribution. The simulation is conducted by
devising, and simulating, the transition density of an irreducible, aperiodic Markov
chain whose invariant distribution is the target posterior distribution. In order to
implement this approach, one basic idea is to avoid the direct use of the likelihood
function (which is, of course, rather complicated and difficult to compute) and to
focus on the posterior distribution of the parameters and the latent variables

pðb; ff tg; fyjg; fhj:g; fnjg; flj:g; fdjg; fkjg; fzj:g; fqj:gjyÞ, (6)

where the notation zj: is used to denote the collection ðzj1; . . . ; zjnÞ. This distribution is
quite high-dimensional but as we show in the rest of the paper it can be sampled
efficiently by MCMC methods provided the Markov chain is carefully constructed.
Efficiency in this context refers to the serial correlations in the sampled output and is
measured, for each parameter in turn, by the inefficiency factor which is, intuitively
speaking, one plus twice the sum of all the serial correlations.

One issue of particular importance is the type of ‘‘blocking’’ that is used. A single
block MCMC algorithm proceeds by moving c in one simultaneous move from the
current point to the next point in the chain. Since this is infeasible given the high-
dimension of c, the Markov chain is constructed by a divide and conquer strategy
wherein blocks of parameters are updated conditioned on the values of the
remaining blocks; a single, complete transition of the Markov chain occurs when all
the blocks have been thus revised. By carefully managing the blocking structure we
show that efficiency of the simulation scheme can be increased by orders of
magnitude; without use of our refinements, the inefficiency factors often exceed 1000,
and with our refinement they range between 20 and 50, even in our highest
dimensional model. The practical ramifications of this are significant. If in one case
one needed perhaps quarter-million samples from the posterior distribution, in the
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other 10,000 would suffice. For models as large as we are interested in fitting, the
value of this improvement cannot be overstated.

2.3. Proposed MCMC algorithm

One key step in our algorithm is the sampling of b and the factors ff tg in one
block, conditioned on ðy; fhj:g; flj:g; fzj:g; fqj:gÞ. Because b and f t appear in product
form, the obvious approach of sampling b conditioned on ff tg and then sampling
ff tg conditioned on b is less effective, which we demonstrate in Section 4. The next
step of the algorithm is also interesting because given ðy;B; ff tg; flj:g; fzj:g; fqj:gÞ, and
the conditional independence of the errors in (3), the model can be devolved into
ðpþ kÞ conditionally Gaussian state space models. This implies that the log-
volatilities and series specific parameters can be sampled series-by-series. This is one
reason that our approach is scalable in both p and k.

Sampling of b: To begin, consider then the sampling of b from the density

pðbjy; fhj:g; fzj:g; fqj:g; flj:gÞ / pðbÞ
Yn

t¼1

pðytjB; ht; zt; qt; ltÞ

/ pðbÞ
Yn

t¼1

NpðytjKtqt;OtÞ,

where pðbÞ is the normal prior density defined above. To sample this density, which is
typically quite high-dimensional, we use the Metropolis-Hastings (M-H) algorithm
(Chib and Greenberg, 1995). We follow Chib and Greenberg (1994) and take the
proposal density to be multivariate-t, Tðbjm;S; nÞ, where m is the approximate mode
of l ¼ logf

Qn
t¼1NpðytjKtqt;OtÞg, and S is minus the inverse of the second derivative

matrix of l; the degrees of freedom n is set arbitrarily at 15. If we let the ijth free
element of B be denoted by bij and define eyt ¼ yt � Ktqt, we have that

l ¼
Xn

t¼1

log fpðytjKtqt;OtÞ ¼ const�
1

2

Xn

t¼1

log jOtj

�
1

2

Xn

t¼1

ðyt � KtqtÞ
0O�1t ðyt � KtqtÞ

and

ql

qbij

¼
1

2

Xn

t¼1

eyt
0O�1t

qOt

qbij

O�1t eyt � tr O�1t

qOt

qbij

� �� �
¼
Xn

t¼1

s0t
qB

qbij

DtB
0st � tr Et

qB

qbij

0� �� �
,

where st ¼ O�1t eyt, Et ¼ O�1t BDt, and O�1t ¼ ðV
�
t Þ
�1
� ðV�t Þ

�1BfD�1t þ B0ðV�t Þ
�1Bg�1

B0ðV�t Þ
�1. With these derivatives, ðm;SÞ can be found by a sequence of

Newton–Raphson iterations. Then the M-H step for sampling b is implemented
by drawing a value b� from the multivariate-t distribution, namely Tðm;S; nÞ, and
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accepting the proposal value with probability

aðb;b�jey; fhj:g; flj:gÞ ¼ min 1;
pðb�Þ

Qn
t¼1Npðeytj0;V

�
t þ B�DtB

�0Þ

pðbÞ
Qn

t¼1Npðeytj0;V
�
t þ BDtB

0Þ

Tðbjm;S; nÞ
Tðb�jm;S; nÞ

� �
,

(7)

where b is the current value. If the proposal value is rejected, the next item of the
chain is taken to be the current value b.

Sampling of ff tg: The joint sampling of b and the factors is completed by sampling
ff tg from the distribution ff tgjey;B; h; l. This step is simple because the latter
distribution breaks up into the product of the distributions f tjeyt; ht; lt;B. By
standard Bayesian calculations, one can derive that the latter distribution is
Gaussian with mean f̂ t ¼ F tB

0ðV�t Þ
�1eyt and variance Ft ¼ ðB

0ðV�t Þ
�1BþD�1t Þ

�1.
Sampling of fyjg and fhj:g: In the next step of the algorithm, given
ðy;B; ff tg; flj:g; fzj:g; fqj:gÞ, and the conditional independence of the errors in (3), we
exploit the fact that the model separates into ðpþ kÞ conditionally Gaussian state
space models. Let at ¼ Bf t, a p vector with components ajt, and let

zjt ¼
lnðyjt � ajt � ðexpðzjtÞ � 1Þqjt þ cÞ2 þ lnðljtÞ; jpp:

lnðf 2
j�p;tÞ; jXpþ 1;

8<:
where c is an ‘‘offset’’ constant that is set to 10�6. Then from Kim et al. (1998) it
follows that the pþ k state space models can be subjected to an independent analysis
for sampling the fyjg and fhj:g. In particular, the distribution of zjt, which is hjt plus a
log chi-squared random variable with one degree of freedom, may be approximated
closely by a seven component mixture of normal distributions, allowing us to express
the MSVJt model as

zjtjsjt; hjt�Nðhjt þmstj
; v2stj
Þ,

hjt � mj ¼ fjðhjt�1 � mjÞ þ sjZjt; jppþ k, (8)

where sjt is a discrete component indicator variable with mass function
Prðsjt ¼ iÞ ¼ qi, ip7, tpn, and mstj

, v2stj
and qi are parameters that are reported in

Chib et al. (2002). Thus, under this representation, conditioned on the transformed
observations we have that

pðfsj:g; y; fhj:gjzÞ ¼
Ykþp

j¼1

pðsj:; yj ; hj:jzj:Þ,

which implies that the mixture indicators, log-volatilities and series specific
parameters can be sampled series by series.

Now, for each j, one can sample ðsj:; yj ; hj:Þ by the univariate SV algorithm given by
Chib et al. (2002). Briefly, sj: is sampled straightforwardly from

pðsj:jzj:; hj:Þ ¼
Yn

t¼1

pðsjtjzjt; hjtÞ,
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where pðsjtjzjt; hjtÞ / pðsjtÞfðzjtjhjt þmstj
; v2stj
Þ is a mass function with seven points of

support. Next, yj is sampled by the M-H algorithm from the density pðyjjzj:; sj:Þ /

pðyjÞpðzj:jsj:; yjÞ where

pðzj:jsj:; yjÞ ¼ pðzj1jsj:; yjÞ
YT
t¼2

pðzjtjF
�
jt�1; sj:; yjÞ (9)

and pðzjtjF
�
j;t�1; sj:; yjÞ is a normal density whose parameters are obtained by the

Kalman filter recursions, adapted to the differing components, as indicated by the
component vector sj: Finally, hj: is sampled from ½hj:jzj:; sj:; yj� by the simulation
smoother algorithm of de Jong and Shephard (1995).

Sampling of fnjg; fqj:g and flj:g: In the remaining steps, the degrees of freedom
parameters, jump parameters and associated latent variables are sampled
independently for each time series. Significant improvements in simulation efficiency
are achieved by sampling nj marginalized over lj: from the multinational distribution

Prðnjjyj:; hj:;B; f ; qj:; zj:Þ / PrðnjÞ
Yn

t¼1

Tðyjtjajt þ fexpðzjtÞ � 1gqjt; expðhjtÞ; njÞ.

(10)

Next, the jump indicators fqj:g are sampled from the two-point discrete distribution

Prðqjt ¼ 1j yj:; hj:;B; f ; nj ; zj:;kjÞ / kjTðyjtjajt þ fexpðzjtÞ � 1g; expðhjtÞ; njÞ,

Prðqjt ¼ 0j yj:; hj:;B; f ; nj ; zj:;kjÞ / ð1� kjÞTðyjtjajt; expðhjtÞ; njÞ,

followed by the components of the vector lj: from the density

ljtjyjt; hjt;B; f ; nj ; qjt;cjt�gamma
nj þ 1

2
;
nj þ ðyjt � ajt � ðexpðzjt � 1ÞqjtÞÞ

2

2 expðhjtÞ

 !
.

Sampling of fdjg and fzj:g: Finally, we sample the parameters dj and zj:. For
simulation efficiency reasons, these two parameters must also be sampled in one
block. To see how this is possible, note that if kjt is small, as is true in financial
applications with high frequency returns that are measured in decimals, expðzjtÞ may
be closely approximated by 1þ zjt, implying that kjtqjt equals zjtqjt and zjt can be
marginalized out. This permits the sampling of dj from the density

pðdjÞ
Yn

t¼1

Nðajt � 0:5d2j qjt; d
2
j q2

jt þ expðhjtÞl
�1
jt Þ (11)

by the M-H algorithm. Once dj is sampled, the vectors zj: are sampled, bearing in
mind that their posterior distribution is updated only when qjt is one. Therefore,
when qjt is zero, we sample zjt from Nð�0:5d2j ; d

2
j Þ, otherwise we sample from the

distribution NðCjtð�0:5þ expð�hjtÞljtyjtÞ;CjtÞ, where Cjt ¼ ðd
�2
j þ expð�hjtÞljtÞ

�1.
The algorithm is completed by sampling the components of the vector k
independently from kjjqj:�betaðu0j þ n1j ; u1j þ n0jÞ, where n0j is the count of qjt ¼ 0
and n1j ¼ n� n0j is the count of qjt ¼ 1.
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A complete cycle through these various distributions completes one transition of
our Markov chain. These steps are then repeated G times, where G is a large number,
and the values beyond a suitable burn-in of say a 1000 cycles, are used for the
purpose of summarizing the posterior distribution.
3. Model comparison

In this section, we show how the MSVJt model can be compared with alternative
multivariate and univariate specifications. We do this comparison based on the
marginal likelihood of each model and the associated Bayes factors (ratios
of marginal likelihoods). Because of the dimensions involved, computation of the
marginal likelihood presents several challenges. Nonetheless, our study of the
problem has revealed that the method of Chib (1995) and Chib and Jeliazkov (2001)
is feasible in this context, and quite effective in picking the true model, as we
demonstrate in our simulation exercises.

The starting point of the Chib method is the basic marginal likelihood identity
under which the log of the Bayes factor for comparing non-nested models M1 to M2

can be written as

log pðyjM1Þ � log pðyjM2Þ

¼ log pðyjM1;c
�
1Þ þ log pðc�1jM1Þ � log pðc�1jM1; yÞ

� flog pðyjM2;c
�
2Þ þ log pðc�2jM2Þ � log pðc�2jM2; yÞg, ð12Þ

where pðyjMj ;c
�
j Þ is the likelihood function under Mj, pðc�j jMjÞ and pðc�j jMj ; yÞ are

the corresponding prior and posterior densities, evaluated at some specified point c�j ,
say the posterior mean. The next step is to estimate the likelihood and posterior
ordinates by some efficient method.

3.1. Posterior ordinate

To estimate the posterior ordinate we use a marginal/conditional decomposition
and the output of the original and subsequent ‘‘reduced MCMC runs’’. To explain
this technique, let

pðc�jM; yÞ ¼ pðb�; n�; y�; d�;k�jM; yÞ

¼ pðb�jM; yÞpðn�jM; y; b�Þpðy�jM; y; b�; n�Þ

�pðd�jM; y;b�; y�; n�Þpðk�jM; y; b�; y�; n�; d�Þ

and consider the estimation of each of the terms starting in the second line of this
decomposition. It turns out that for the sample sizes in our applications, the
marginal posterior densities of the factor loadings are very concentrated around the
mean and close to normal. For simplicity, therefore, we approximate pðb�jM; yÞ by
the ordinate of a normal density with mean vector and covariance matrix obtained
from the full MCMC run.
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Second, to estimate the p-dimensional conditional ordinate pðn�jM; y; b�Þ we fix b
at b� and continue our MCMC simulation for another G iterations. Within this run,
the ordinates of the conditional mass function Prðnjjyj:; hj:;B

�; f ; qj:; zj:Þ are averaged
and the resulting modal probability is taken as the estimate of pðn�jM; y; b�Þ.

Third, to estimate the conditional ordinate pðy�1; . . . ; y
�
pþkjy;M;b�; n�Þ we group

the yj ’s in groups of two (each of dimension six) and produce output from the
appropriate reduced MCMC runs to estimate the resulting ordinates. Specifically, to
estimate pðy�1; y

�
2jy;M;b�; n�Þ we fix b at b�, n at n� and run the MCMC algorithm

given above. The desired ordinate is then estimated by the kernel smoothing method
applied to the output on y1 and y2 from this run. The process is repeated in sequence,
in each case with additional parameters held fixed.

Next, we estimate the ordinate pðd�jM; y;b�; n�; y�Þ by applying a result given in
Chib and Jeliazkov (2001). Specifically, it can be shown that the ordinate

pðd�jM; y;b�; n�; y�Þ ¼
Z Yp

j¼1

pðd�j jM; yj:;b
�; n�; y�; hj:; f ; qj:; lj:Þ

�dpðfhj:g; f ; fqj:g; flj:gjM; y;b�; n�; y�Þ,

where p denotes generically the distribution of the enclosed random vectors, can be
expressed as

E1

Qp
j¼1aðdj ; d

�
j jM; yj:;b

�; n�; y�; hj:; f ; qj:; lj:Þqðd
�
j jM; yj:; b

�; n�; y�; hj:; f ; qj:; lj:Þ

E2

Qp
j¼1aðd

�
j ; djjM; yj:;b

�; n�; y�; hj:; f ; qj:; lj:Þ
,

(13)

where a is the probability of move in the M-H step for dj, q is the student-t proposal
density in that step, E1 is the expectation with respect to pðfhj:g; f ; fqj:g; flj:gj

M; y; b�; n�; y�Þ and E2 is the expectation with respect to

pðfhj:g; f ; fqj:g; flj:gjM; y; b�; n�; y�; d�Þ
Yp

j¼1

qðdjjM; y;b�; n�; y�; d�; hj:; f ; qj:; lj:Þ.

The first of these expectations can be computed from the output of a reduced
MCMC run in which b; n, and y are fixed at their starred values. The second
expectation can be computed from the output of an additional reduced run in which
d is also fixed; for each draw of fhj:g; f ; fqj:g; flj:g in this reduced run, dj is drawn from
the proposal density and these combined draws are used to average the probability
of move in the denominator of (13).

Finally, to estimate the k� conditional ordinate, the parameters ðb; n; y; dÞ are fixed
and the quantities fqt;kg are drawn in a reduced MCMC run. The required ordinate
then follows by averaging the beta density of k.

3.2. Filtering and likelihood evaluation

We now discuss a simulation-based approach, called the auxiliary particle filtering
method (see Pitt and Shephard (1999a) and the book length review of Doucet et al.
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(2001)), to estimate the likelihood ordinate log f ðy1; . . . ; ynjM;c�Þ ¼Pn
t¼1 log f ðytjM;Ft�1;c

�
Þ, where

f ðytjM;Ft�1;c
�
Þ ¼

Z
NpðytjKtqt;OtÞpðlt;Kt; qtjM;c�ÞpðhtjM;Ft�1;c

�
Þ

� dht dlt dKt dqt

is the one-step-ahead predictive density of yt,

pðhtjM;Ft�1;c
�
Þ ¼

Z
pðhtjM; ht�1;c

�
Þpðht�1jM;Ft�1;c

�
Þdht�1

is the one-step-ahead predictive density of ht, pðhtjM; ht�1;c
�
Þ ¼

Qpþk
j¼1 Nðhtjjm�j þ

f�j ðhj;t�1 � m�j Þ;s
2Þ is the product of the Markov transition densities and

pðht�1jM;Ft�1;c
�
Þ is the posterior distribution of ht�1 given Ft�1 (the filtered

distribution).
We now use a sequential Monte Carlo filtering procedure to efficiently estimate

the one-step-ahead predictive density of yt given above. In this procedure,
introduced for stochastic volatility models by Kim et al. (1998), samples (particles)
from the preceding filtered distribution (e.g., pðht�1jM;Ft�1;c

�
Þ) are propagated

forward to produce samples from the subsequent filtered distribution (namely,
pðhtjM;Ft;c

�
Þ). Suppose then that we have a sample h

ðgÞ
t�1 ðgpMÞ from the filtered

distribution ht�1jM;Ft�1;c
�. Based on this sample, we can approximate the one-

step-ahead predictive density of ht as

pðhtjM;Ft�1;c
�
Þ ’

1

M

XM
g¼1

pðhtjM; hðgÞt�1;c
�
Þ.

Under this approximation, the posterior density of the latent variables at time t is
available as

pðlt;Kt; qt; htjM;Ft;c
�
Þ

/ NpðytjKtqt;OtÞpðlt;Kt; qtjM;c�ÞpðhtjM;Ft�1;c
�
Þ

_/NpðytjKtqt;OtÞpðlt;Kt; qtjc
�
Þ
1

M

XM
g¼1

f ðhtjM; hðgÞt�1;c
�
Þ ð14Þ

and the objective is to sample this density. This sampling is carried out as follows. In
the first stage, proposal values h�ð1Þt ; . . . ; h�ðRÞt are created. These values are then

resampled to produce the draws fhð1Þt ; . . . ; h
ðMÞ
t g that correspond to draws from (14).

We have found that R should be five or ten times larger than M to ensure efficient
propagation of the particles.

Auxiliary particle filter for multivariate SV model
1.
 Given values fh
ð1Þ
t�1; . . . ; h

ðMÞ
t�1 g from ðht�1jM;Ft�1;c

�
Þ calculate ĥ

�ðgÞ

t ¼ EðhðgÞt jh
ðgÞ
t�1Þ

and

wg ¼ Npðytj0;Otðĥ
�ðgÞ

t ; 1;B�Þ;c�Þ; g ¼ 1; . . . ;M



ARTICLE IN PRESS

S. Chib et al. / Journal of Econometrics 134 (2006) 341–371352
and sample R times the integers 1; 2; . . . ;M with probability w
g
t ¼ wg=

PM
j¼1 wj. Let

the sampled indexes be k1; . . . ; kR and associate these with ĥ
�ðk1Þ

t ; . . . ; ĥ
�ðkRÞ

t .
2.
 For each value of kg from Step 1, simulate the values fh�ð1Þt ; . . . ; h�ðRÞt g from

h
�ðgÞ
j;t ¼ m�j þ f�j ðh

ðkgÞ

j;t�1 � m�j Þ þ s�j Z
ðgÞ
j;t ; g ¼ 1; . . . ;R,

where ZðgÞj;t �Nð0; 1Þ. Likewise draw lðgÞt , K
ðgÞ
t , q

ðgÞ
t from their prior pðlt;Kt; qtjc

�
Þ,

where K
ðgÞ
t ¼ diag k

ðgÞ
1t ; . . . ; k

ðgÞ
pt

n o
and zðgÞjt ¼ lnð1þ k

ðgÞ
jt Þ is drawn from

Nð�0:5d�2j ; d
�2
j Þ.
3.
 Resample the values fh�ð1Þt ; . . . ; h�ðRÞt gM times with replacement using probabilities
proportional to

w�g ¼
NpðytjK

ðgÞ
t q
ðgÞ
t ;Otðh

�ðgÞ
t ; lðgÞt ;B

�ÞÞ

Npðytj0;Otðĥ
�ðkgÞ

t ; 1;B�ÞÞ
; g ¼ 1; . . . ;R

to produce the desired filtered sample fhð1Þt ; . . . ; h
ðMÞ
t g from ðhtjM;Ft;c

�
Þ.

As discussed by Pitt (2001), the weights produced in the above algorithm
provide a simulation-consistent estimate of the likelihood contribution. In
particular,

bf ðytjM;Ft�1;c
�
Þ ¼

1

M

XM
g¼1

wg

 !
1

R

XR

g¼1

w�g

 !
,

which can be shown to converge to f ðytjM;Ft�1;c
�
Þ in probability as M and R go

to infinity. These estimates are obtained for each t and combined to produce our
estimate of the likelihood ordinate log f ðy1; . . . ; ynjM;c�Þ.

3.2.1. Forecasting

The output from a particle filter can also be used to perform forecasting. That is
we can estimate by simulation the density or moments of, for example,Xs

j¼1

ytþjjM;Ft;c
�,

the s-step ahead return vector or

1

s

Xs

j¼1

O�ðhtþ1; . . . ; htþsÞjM;Ft;c
�,

where

O�ðhtþ1; . . . ; htþsÞ ¼
Xs

j¼1

V�tþj þ B�DtþjðhtþjÞB
�0

is the associated average covariance over that period of length s. Recall that V�tþj

depends upon ltþj. Given the output fh1
t ; . . . ; h

M
t g from the particle filter, we can
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simply propagate each of these particles forward using their autoregressive structure
(4) to get samples from f ðhtþ1; . . . ; htþsjM;Ft;c

�
Þ. These can be used in a variety of

ways, for example noting thatXs

j¼1

ytþjjM;Ft; y
�; fhtþ1g; flt;Kt; qtg�N

Xs

j¼1

Ktþjqtþj ;O
�ðhtþ1; . . . ; htþsÞ

( )
yields an easy way of using a Rao–Blackwell argument to estimate the higher order
moments of returns over s periods.

3.2.2. Filtered correlations

In many financial decisions it is important to know the correlations between the
returns on holding various risky assets. Here we briefly describe the time series
evolution of the correlations for the above series, estimating the correlations using
contemporaneous information. We could derive the correlations through the filtered
time varying covariance matrix

O�tjt�1 ¼ EfOðht; ltÞ þ Ktqtq
0
tKtjM;Ft�1g

¼ EðV tjM;Ft�1Þ þ BfEðDtjM;Ft�1ÞgB
0 þ EfKtqtq

0
tKtjMg.

However, that would give a biased estimator of the correlation. Instead we work
with

Rtjt�1 ¼ EfCðht; lt;Kt; qtÞjM;Ft�1g,

where

Cðht; lt;Kt; qtÞ ¼ diagfO�ðht; lt;Kt; qtÞg
�1=2O�ðht; lt;Kt; qtÞ

�diagfO�ðht; lt;Kt; qtÞg
�1=2

is the conditional correlation matrix for ytjht; lt;Kt; qt. By construction Rtjt�1 is the
minimum mean square error estimator of the correlation. This can be easily
estimated by

1

M

XM
g¼1

CðhðgÞt ; l
ðgÞ
t ;K

ðgÞ
t ; q

ðgÞ
t Þ,

where hð1Þt ; . . . ; h
ðMÞ
t is the output from the particle filter from the density

f ðhtjM;Ft�1;c
�
Þ and flðgÞt ;K

ðgÞ
t ; q

ðgÞ
t g are i.i.d. draws from pðltjM;c�Þ.
4. Simulation study

We now provide evidence on the effectiveness of our methods when applied to
models of up to 50 dimensions. We report on the simulation efficiency of the fitting
method, the estimation accuracy, robustness to changes in the prior, and on the
reliability of the model selection method.
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4.1. Calibration

In simulating the data we aim to replicate the dynamics of commonly observed
financial time series. In particular, our simulation designs mimic the features of daily
equity returns (measured in decimals). For the calibration, we first fit the MSVJt

model with 8 factors to daily returns on 40 major stocks listed on the New York
Stock Exchange. The specifics of this data set and detailed estimation results were
part of a previous version of the paper and can be obtained from the authors.
Second, for each parameter we compute the average and the standard deviation of its
posterior mean across stocks. We then generate one set of model parameters from
distributions whose mean closely matches the average of the posterior means. For
instance, the average posterior mean for mj across 40 stocks is �9:017 and the
standard deviation of the posterior means is 0.429. We generate the 40 mjs from a
normal distribution with mean equal to 9 and standard deviation equal to 1. The
details for the other parameters appear in the following subsections. Finally, given a
set of model parameters we simulate the data series.
4.2. Prior distribution

In the experiments we assume that the parameters are a priori mutually
independent. To select the hyperparameters we use the equity data as a training
sample: for each parameter we set the prior mean close to the average of the
posterior means across stocks and the prior standard deviation close to an integer
multiple of the cross-sectional standard deviation of the posterior means. The
exception is the prior for n which is set to a uniform discrete distribution covering the
range of the estimated ns. This leads to the following prior distributions that will be
used throughout, unless otherwise noted. Free elements of B : bij�Nð1; 9Þ;
m : mi�Nð�9; 25Þ; f : f

�
j�betaða; bÞ, where fj ¼ 2f�j � 1, so that the prior mean of

fj is 0.86 and standard deviation is 0.11; s : sj�IGðc=2; d=2Þ with mean of 0:25 and
standard deviation of 0:4; n : nj is discrete uniform over the grid ð5; 8; 11;
14; 17; 20; 30; 60Þ; logðdÞ : logðdjÞ�Nð�3:07; 0:148Þ, implying a mean of 0.05 and
standard deviation of 0.02 on dj; and k : kj�betað2; 100Þ. Since d affects directly the
variability of the jump size, under the selected prior daily jumps in returns are
expected to lie within the �10% range. The hyperparameters in the prior of k imply
a mean jump probability of 1.96% per observation and a standard deviation of
1.36%. This translates into jumps that are expected to occur about 50 observations
apart (four or five jumps per year with daily data).
4.3. Starting values

Our algorithm in Section 2.3 is initialized with values for the following random
variables:

fhj:g
pþk
j¼1 ; fcj:g

p
j¼1; fqj:g

p
j¼1; flj:g

p
j¼1.
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We set the fcj:g and fqj:g vectors equal to zero (the no jumps case), the flj:g equal to
one (the conditionally Gaussian errors case) and the latent volatilities to �10.
4.4. Simulation efficiency

A key feature of our estimation method is the sampling of B marginalized over the
factors. Whereas it is simpler to condition on the factors, as done by Geweke and
Zhou (1996), Pitt and Shephard (1999b), Aguilar and West (2000) and Jacquier et al.
(1995) in the context of static and dynamic factor models, the sampled output is far
less well behaved. To show this, we generate eight data sets, labeled D1–D8, from
different models and with different number of assets, factors and time series
observations, and evaluate the alternative samplers in terms of the realized
inefficiency factors. The inefficiency factor is the inverse of the numerical efficiency
measure in Geweke (1992) and is computed from the MCMC output as the square of
the numerical standard error divided by the variance of the posterior estimate under
(hypothetical) i.i.d. sampling.

We draw the parameters of the models from the following distributions: the free
elements of bij are from Nð0:9; 1Þ; mj from Nð�9; 1Þ; fj from a scaled beta with mean
0.95 and variance 0.03, sj, nj, log dj and kj from their prior distributions. The
specifics of each data set are shown in Table 1. It should be noted that the models are
quite high-dimensional; the smallest has 142 parameters and the largest has 688.

For each data set, we employ the marginalized sampling procedure and two other
methods where the elements of B are sampled either by column or by row,
conditioned on the factors. For the algorithm proposed in this paper we run the
MCMC sampler for 11,000 iterations, collecting the last 10,000 for inferential
purposes. For the other two methods, expecting a drop in simulation efficiency, we
collect 50,000 draws after discarding the first 5000. We compare the three methods,
as they relate to the sampling of B, in terms of the relative inefficiency factors (the
ratio of inefficiency factors). As can be seen from Table 2, in models with four
factors (D1–D6) our procedure is between 20 and 40 times more efficient than the
other two methods. In models with eight factors (D7 and D8), our method is about
80 times more efficient. Furthermore, the efficiency of our method does not erode as
the dimensionality and complexity of the model is increased whereas the other
methods become even less efficient. The performance gains from sampling B in the
Table 1

Features of simulated data sets

Data set Model p k n Parms Data set Model p k n Parms

D1 MSV 20 4 2000 142 D2 MSV 50 4 2000 352

D3 MSV 20 4 1000 142 D4 MSV 50 4 1000 352

D5 MSV 20 4 5000 142 D6 MSV 50 4 5000 352

D7 MSV 40 8 2000 428 D8 MSVJt 50 8 2000 688

Parms denotes the number of parameters.
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Table 2

Summary output for inefficiency factors

Sampling B Mean S.D Low Upp Max Min Mean S.D Low Upp Max Min

D1 D2

Row/Marg 34.5 17.3 24.6 46.0 71.0 1.8 29.7 17.0 17.9 39.4 91.4 6.2

Col/Marg 37.9 21.1 22.1 50.3 83.9 1.3 33.4 19.5 18.8 45.4 106 7.4

Col/Row 0.8 0.6 0.5 1.7 2.3 0.2 1.2 0.6 0.8 1.5 3.8 0.5

D3 D4

Row/Marg 36.4 29.5 14.1 46.0 113 4.0 41.7 23.7 26.8 51.2 132 2.9

Col/Marg 27.5 15.1 16.5 41.4 59.3 3.6 15.9 9.8 7.6 20.4 45.7 2.0

Col/Row 0.9 0.3 0.7 1.2 1.7 0.5 0.4 0.2 0.3 0.6 1.1 0.1

D5 D6

Row/Marg 24.0 27.3 4.6 31.8 167 2.3 88.0 49.3 42.7 131 185 11.8

Col/Marg 14.8 16.2 4.0 18.3 101 1.9 62.3 45.5 26.4 91.0 231 2.3

Col/Row 0.7 0.2 0.5 0.9 1.8 0.3 0.9 1.1 0.4 1.0 9.0 0.1

D7 D8

Row/Marg 62.3 36.0 33.4 87.1 161 9.6 76.9 54.7 25.9 119 279 3.3

Col/Marg 89.7 54.9 44.4 126 238 6.1 84.6 56.2 29.2 128 294 5.1

Col/Row 1.5 0.8 1.0 1.9 6.5 0.3 1.3 0.4 1.0 1.7 2.4 0.3

The table summarizes the distribution of relative inefficiency factors for the estimated factor loadings.

Row denotes sampling by row, Col sampling by column and Marg sampling marginalized over the factors.

Results are reported for different simulated data sets and for alternative sampling schemes for the factor

loading matrix B. Low denotes the 25th percentile, Upp denotes the 75th percentile.
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way we suggest are worth the computational burden because substantially smaller
Monte Carlo samples are needed to achieve a given level of numerical accuracy. On
average, our procedure is 5–6 times slower in terms of CPU time per MCMC
iteration than the alternative non-marginalized methods. In Section 4.7 below we
provide additional details on the computational burden.

We next consider the specifics of our MCMC scheme as they relate to the sampling
of n and d. We generate an additional data set, D9, from the MSVJt model with 50
series, 4 factors and 2000 observations per series and we employ our method along
with several alternatives where one or more of the reduced blocking steps in the
generation of B, n and d are switched off. Efficiency factors from these runs are
reported in Table 3. Two patterns are noticeable. First, the reduced blocking scheme
leads to much better mixing for both n and d. On average, our proposed method is
40–50 times more efficient than the alternatives. Second, these performance gains are
realized even when B is sampled conditioned on the factors.

4.5. Parameter estimates and factor extraction

In this section, we first show the ability of the proposed algorithm to correctly
estimate the large number of parameters and latent variables in the model. Second,
we assess the robustness of the algorithm to changes in the prior. We contrast the
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Table 3

Summary output for inefficiency factors

Sampling Mean S.D Low Upp Mean S.D Low Upp Mean S.D Low Upp

B d n
s1/s2 108.4 49.6 66.5 147.8 1.0 0.3 0.9 1.2 1.1 0.3 0.9 1.3

s3/s1 1.0 0.2 1.0 1.0 54.8 27.2 37.1 65.0 41.1 13.2 24.1 49.9

s3/s2 106.4 49.6 63.3 139.1 54.2 25.2 34.5 64.4 43.1 13.0 26.7 51.3

The table summarizes the distribution of relative inefficiency factors for the estimated factor loadings (B),

degrees of freedom parameters ðnÞ and jump intensity parameters ðdÞ. Results are reported for a data set of

50 series and 2000 observations per series and for alternative sampling schemes for B, n and d. Specifically,
s1: B non-marginalized, nmarginalized, d marginalized. s2: all marginalized. s3: all non-marginalized. Low

denotes the 25th percentile, Upp denotes the 75th percentile.

Table 4

Summary output for simulated data

Sampling B ma fa sa d k mf ff sf n

Bmarg Prior1 .97 .99 .92 .92 .95 .92 .98 .91 .86 .82

Bbycol Prior1 .84 .99 .90 .88 .95 .92 .88 .77 .38 .82

Bmarg Prior2 .95 .99 .90 .88 .98 .92 .95 .94 .84 .82

Bbycol Prior2 .84 .99 .90 .87 .98 .92 .88 .77 .39 .81

Bmarg Prior3 .98 .95 .98 .96 .87 .35 .98 .99 .99 .80

Bmarg Prior4 .98 .97 .98 .97 .96 .30 .99 .99 .99 .83

Bmarg Prior5 .99 .94 .98 .96 .96 .12 .98 .99 .99 .83

Entries are the correlation coefficients between the true parameter values and MCMC estimates. The latter

are the average of posterior means across 40 samples with n ¼ 1250. Bmarg denotes the sampling of B

marginalized over the latent factors, Bbycol denotes the sampling of B conditioning on the factors and

done by column. Prior1, Prior2, Prior3, Prior4 and Prior5 are defined in the main text.
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results from our proposed method with those where B is sampled by columns,
conditioned on the factors.

In these experiments, the artificial data sets are generated from the MSVJt model
with 40 series and eight factors. Each simulated series has 1250 observations,
equivalent to about 5 years of daily data. We use the same mechanism described in
the previous section to generate one set of true parameters. From these parameter
values we then generate a total of 40 data sets and we fit the 8 factor MSVJt model to
each of them. Due to the differences in the simulation efficiency, the preferred
MCMC algorithm is run for 10,000 iterations while the non-marginalized MCMC
algorithm is run for 100,000 iterations. We initially use the same priors reported in
Section 4.2, defined collectively as Prior1.

Table 4 contains correlations between the true values and the parameter estimates
for the alternative procedures and priors. The estimates are obtained as the grand
averages of the posterior means across simulated samples.
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Consider first the estimates for the factor loading matrix, which in this case has
284 free parameters. The correlation between the true values and the grand averages
across samples is substantially higher for the more efficient procedure: 97.28% vs.
83.88%. The bar graph in Fig. 1 shows that the proposed approach yields accurate
estimates of the B matrix (elements for only four factors are plotted). Second, the
estimates of the volatility parameters for the factors (not reported) are noticeably
more accurate for the preferred algorithm. Third, the estimates of the parameters in
the volatility evolution equations are also less accurate from the non-reduced
blocking scheme. The log-volatility levels, denoted by ma, are closely identified by
both procedures; somewhat larger deviations are recorded for the fs and the ss:
however, the correlations of the estimates with the true values are quite high, of the
order of 90%. Next, consider the jump parameters, d and k. Without providing a
graph we mention that the average of the posterior means across the different data
sets are slightly closer to the true values for d ðcorrelation ¼ 95%Þ than k (correlation
of 92%). In both cases the standard deviations across samples are quite small
compared to their respective means. For the jump parameters we do not find
meaningful differences across sampling schemes. The performance of both
algorithms is relatively less satisfactory for the degrees of freedom parameters of
the student-t distributions. The correlation with the true values is only 82%. This
could be due to the large overall dimension of the parameter space combined with a
relatively limited sample size used in the estimation.

Finally, consider the relationship between the true and estimated factors. Fig. 2
displays the correlations across samples for the common factors: the estimates for
these latent variables are obtained by averaging across the MCMC draws for each
0.6

1.1 factor 1 loadings

0

2
factor 4 loadings

-2

1 factor 6 loadings

1

4 factor 8 loadingsTruth
Estimate

Fig. 1. True values vs. posterior estimates for the factor loadings. Each panel displays the loadings on a

different factor (only factor 1, 4, 6 and 8 are reported). The posterior quantities are the average of

posterior means across 40 samples with n ¼ 1250.
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Fig. 2. Correlations between true and estimated factors across simulated samples. For each data set the

estimates are obtained by averaging the draws of the MCMC sampler. The results are based on 40

simulated data sets of size 1250 each.
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sample. We report the summaries for factor 1, 2, 5 and 8. In all cases the latent series
are estimated well with correlations with the true values ranging between 70% and
95%. The precision is high for the first factor, decreasing somewhat for the other
factors. These experiments show that the suggested estimation procedure yields
reliable inferences for both the model parameters and the latent dynamic factors.
Relying on the non-marginalized schemes to update the factor loadings leads to
significant biases. These biases arise not only in the estimates of the loading
parameters but also in those of the factor volatilities.

4.5.1. Alternative prior distributions

We now repeat the estimation with different choices of hyperparameters. We begin
with a more diffuse independent N(0,1000) prior on bij. This prior is labeled Prior2.
The posterior mean of the parameters under this prior are reported in the third and
fourth row of Table 4. Both posterior sampling procedures appear to be robust to
this change in the prior as the correlations between the true and simulated values are
almost unaltered. It remains true, however, that the marginalized sampling scheme is
better at estimating the factor loadings and the factor volatility parameters. Next, we
investigate our ability to learn about the jump components of the model by varying
the prior on the jump parameters d and k. The first prior, labeled Prior3, implies
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infrequent but large jumps whereas the second, labeled Prior4, assigns a higher
probability to the occurrence of relatively more frequent but significantly smaller
jumps. Specifically, in Prior3 we impose a mean of 10% and a standard deviation
of 2% on dj and we let kj�betað2; 400Þ. In this instance jumps are expected to
occur only once or twice per year at the daily frequency. In Prior4,
logðdjÞ�Nð�4:023; 0:223Þ, implying a mean of 0.02 and standard deviation of 0.01
on dj; and kj�betað9; 200Þ. The latter choice implies that a jump is expected almost
every month. For the third alternative prior, labeled Prior5, we choose a mean and a
standard deviation of 10% on dj whereas kj�betað1; 1Þ, a uniform density on ð0; 1Þ.

The results from rerunning the estimation over the same 50 simulated data sets are
shown in the last two rows of Table 4. We can make two broad conclusions. First,
that when the sample is small, the posterior distribution of the jump intensity kj is
affected by the prior but that the posterior distribution of dj is less affected. The
experiments confirm the need, indicated by previous studies, for a long time series for
robust estimation of the jump intensity. In unreported results we find that to reach a
correlation between true values and posterior means in the 0.8–0.9 range one needs a
sample size of approximately 7500 daily observations. Our second conclusion is that
the prior of the jump parameters does not materially affect the posterior distribution
of the remaining parameters.
4.6. Performance of the marginal likelihood criterion

In this section, we utilize simulated data to assess the performance of the marginal
likelihood and Bayes factor criterion in identifying the correct model across model
types and, within a given model class, the correct number of factors. In the
simulation design, data sets are generated from the MSVt model with three factors.
Each simulated data set contains 30 series of 2000 observations each. The model
parameters in the true model are randomly generated as in Section 4.4. We generate
a total of 50 data sets from the true model. The MSVJ, MSVt and MSVJt models are
then fitted to these data sets, each with 2, 3 and 4 factors. Thus, nine models are each
estimated 50 times under the prior distributions and hyperparameters reported in
Section 4.2. The marginal likelihood of each model in each simulated data set is
calculated from G ¼ 10; 000 MCMC iterations (beyond a burn-in of 1000 iterations)
followed by reduced runs of 10,000 iterations. Finally, the two parameters of the
particle filter algorithm, namely M and R, are set to 20,000 and 200,000, respectively.
4.6.1. Stability

First, we investigate the stability of the posterior ordinate estimate. We randomly
pick 5 of our 50 simulated data sets and compute estimates of the posterior ordinate
for various values of G, the number of reduced-run iterations. In particular, we let G

take the values 5000, 10,000, 20,000 and 50,000. The posterior ordinates from each
of the five data sets are then averaged. Although the data are generated from the
MSVt model, we do this calculation with the MSVJt model which is a larger model.
The estimated values are shown in Table 5.
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Table 5

Natural log-posterior ordinate estimates for different simulation sizes. G denotes the number of reduced

MCMC draws

Data Simulation size G

5000 10,000 25,000 50,000

D2 329.74 329.73 329.80 329.97

D10 325.40 327.18 327.94 327.99

D30 319.11 323.35 323.87 323.71

D40 318.19 320.86 320.14 320.19

D50 346.97 348.87 348.40 348.92

Results are based on five simulated data sets.

Table 6

Frequency distribution (percentage) of Bayes factors across 50 simulated replications

True model: MSVt 3f

1–3.2 3.2–10 10–100 4100 Total 410

MSVt3f/MSV2f 0 0 0 100 100

MSVt3f/MSV3f 0 0 0 100 100

MSVt3f/MSV4f 0 0 2 98 100

MSVt3f/MSVt2f 0 0 0 100 100

MSVt3f/MSVt4f 0 4 20 60 84

MSVt4f/MSVt2f 0 0 4 96 100

MSVt3f/MSVJt2f 0 0 0 100 100

MSVt3f/MSVJt3f 0 0 2 94 96

MSVt3f/MSVJt4f 0 0 10 78 88

The ranges for Bayes factor values correspond to the Jeffreys’ scale.
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The table values indicate that the estimates converge when the number of reduced
runs is at least 10,000.

4.6.2. Model comparison

We conclude our experiments by examining the performance of the marginal
likelihood criterion in selecting the true model. This is done via a sampling
experiment in which we count the frequency with which each possible K-factor
model ðK ¼ 2; 3; 4Þ is picked over the other models, based on the estimated marginal
likelihoods. Table 6 reports the relevant results in which we compare the support for
the true MSVt model with 3 factors against the other specifications.

According to the Jeffreys’ scale, the evidence in favor of the true model is always
decisive versus the basic MSV model as well as versus MSVt 2f and it is at least
substantial against MSVt 4f in 84% of the cases. When compared to the more highly



ARTICLE IN PRESS

S. Chib et al. / Journal of Econometrics 134 (2006) 341–371362
parameterized MSVJt model, MSVt 3f is still selected as the best model 100% of the
times against MSVJt 2f, 98% of the times against MSVJt 3f and 88% of the times
against MSVJt 4f. In all these cases the support in favor of the true model is strong
or decisive. In summary, the simulation evidence provides a convincing validation of
the Bayes factor criterion along two dimensions: the identification of the correct
number of common factors and in the selection of the appropriate model
specification.

4.7. Computational requirements

For the MSVJt model with 20 series and 4 factors fit to 2000 observations per
series, our MCMC algorithm coded in C and running on a Linux 3.4 megahertz
Pentium 4 computer consumes about 3 h of CPU time to generate 11,000 MCMC
draws for the full MCMC run. The filtering algorithm, implemented with M ¼

20; 000 and R ¼ 200; 000, requires about 5 h. The reduced run for computing the
conditional posterior ordinate of y is conducted with 5000 iterations for each pair of
assets and factors. For the 12 pairs used in our benchmark example the required
CPU time is slightly less than 4 h. The reduced run for d needs 2.5 h for 5000 MCMC
iterations whereas the reduced run for k only requires 5–6min for the same number
of MCMC draws. The reported CPU times are essentially linear in the number of
time series observations. The computing times required by the different portions of
the procedure are affected differently, however, as one varies the number of series, p,
included in the model. For instance, doubling the series from 20 to 40 more than
triples the time for the full run and for the reduced run for y, doubles the time
for filtering, does not materially change the burden from the reduced runs for d and
for k.
5. Application to equity returns

In this section, we apply our models to historical stock return data to compare the
empirical performance of our specifications in relation to those from alternative
models of time-varying covariances and correlations, including multivariate
GARCH models. We consider the performance along two dimensions: the ability
to correctly estimate the conditional covariance matrix of future returns and the
unconditional and conditional coverage of the 5% and 1% Value at Risk (VaR)
measures of four pre-defined portfolios.

5.1. Data

The data for the experiments are a set of international weekly stock index returns
for the following 10 countries: Australia, France, Germany, Hong Kong, Italy,
Japan, Singapore, Switzerland, United Kingdom and United States. Specifically, the
data are the weekly Total Market Index series as provided by Datastream
International. For each country, we compute the continuously compounded weekly
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returns (Wednesday to Wednesday) denominated in US dollars. We thus assume the
perspective of a US-based investor who does not hedge currency risk. The sample covers
the period from January 2, 1973 through September 30, 2003 for a total of 1605
observations. The mean is subtracted from each series. It should be noted that we
deliberately restrict ourselves to 10 series because the multivariate GARCH models that
we fit cannot be estimated for dimensions much higher than 10. In fact, even with 10
series, the estimation of the various multivariate GARCHmodels (done with FinMetrics,
a commercial package) was quite difficult with the exception of the DCC model.

5.2. Competing models

As alternatives to the MSV models proposed above we consider six different
specifications. These choices are motivated by the popularity of the models in the
academic literature (see, for example, Ledoit et al., 2003; Lopez and Walter, 2001) as
well as in industry practice. Denote the conditional covariance matrix at time t by St.
The following specifications are used:
1.
 The BEKK GARCH(1,1) model

St ¼ A0A
0

0 þ A1ðut�1u
0

t�1ÞA
0

1 þ B1St�1B
0

1,

where A0 is a lower triangular matrix and all the parameter matrices are p� p. In
this model, first proposed by Engle and Kroner (1995), the conditional covariance
matrix is positive semi-definite by construction.
2.
 The matrix–diagonal vector (MD-VECH) GARCH(1,1) model

St ¼ A0 þ A1A
0

1 � ðut�1u
0

t�1Þ þ B1B
0
1 � St�1, (15)

where A0, A1 and B1 are all lower triangular matrices. This specification appears
in Ding (1994) and Bollerslev et al. (1994). Although less general than the
unrestricted VECH model of Bollerslev et al. (1988), this parametrization insures
a positive semi-definite conditional covariance matrix, a property that does not
hold for the more general VECH model.
3.
 The constant conditional correlation (CCC) GARCH(1,1) model. In this model,
proposed by Bollerslev (1990), the time-varying covariance matrix is decomposed
as follows:

St ¼ DtRDt, (16)

where R is a constant correlation matrix and Dt is a diagonal matrix containing
the conditional standard deviations of the disturbances, each following a
univariate GARCH(1,1) process.
4.
 The dynamic conditional correlation (DCC) GARCH(1,1) model. This extension
of the CCC model was first presented by Engle (2002) and further analyzed by
Engle and Sheppard (2001). In the DCC model the matrix R in (16) is allowed to
be time-varying. We choose the parametrization

Rt ¼ Q��1t QtQ
��1
t , (17)
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where Qt ¼ Sð1� a� bÞ þ að�t�1�
0

t�1Þ þ bQt�1, S is the unconditional covariance
of the standardized residuals obtained from fitting univariate GARCH(1,1)
models to each return series, and Q�t is a diagonal matrix composed of the square
root of the diagonal elements of Qt.
5.
 The rolling window (RollWin) estimator. This is the multivariate equivalent of an
historical volatility measure for univariate data. The matrix forecast for each time
t is set equal to the sample covariance matrix conditional on information up to
time t� 1. We adopt a window of 104 observations, corresponding to 2 years of
weekly returns, as this appears to be a fairly common choice in practice.
6.
 The exponentially weighted moving average (EWMA) model:

St ¼ ð1� lÞðut�1u
0

t�1Þ þ lSt�1.

This formulation is the result of applying exponentially decaying weights to
lagged cross-products of residuals. The calibrated parameter l is typically set to
0.94 for weekly data: this is the choice we adopt in this study as well. The
approach is often used in risk measurement systems and its popularity is, at least
partially, due to the fact that it is the method used and commercialized by
RiskMetrics.

The MSV and multivariate GARCH models are estimated on a moving 20-year
window (1095 weekly returns). For the MSV specification we consider models with
1–4 factors, with and without jumps and fat-tailed errors, and we select the best
model in terms of in-sample fit by using Bayes factors. This model specification is
then used for 1 year (52 weeks) in the forecasting exercise. At the end of each year we
once again determine the best fitting MSV model. Notice that although the model
specification is kept constant for a year, the posterior distribution of the parameters
is updated every week. The multivariate GARCH models are estimated by quasi
maximum likelihood assuming normal and student-t distributions for the error
terms. The optimization of the quasi likelihood function is done through the built-in
routines in the FinMetrics module of SPLUS for all specifications except the DCC
model. For this model the estimation is carried out following the two-step procedure
proposed by Engle (2002) and assuming conditionally normal errors. The forecasting
experiments are started with the first week of 1994. Every model is re-estimated
weekly and a new forecast is generated for the following 1, 2 and 4 weeks using the
updated parameter estimates. The associated VaR measures are computed at the 1-
week horizon. Overall, for each of the seven models specifications 509 forecasts at
three different horizons and 509 1-week VaR measures are produced and evaluated.

5.3. Covariance matrix forecast

We compare the forecast from each model to a baseline variance covariance
matrix that is taken as the true covariance matrix. The latter in unobservable but a
proxy for it can be constructed as suggested by Andersen et al. (2001), Barndorff-
Nielsen and Shephard (2002), Andersen et al. (2003) and Barndorff-Nielsen and
Shephard (2004) and implemented, among others, by Ledoit et al. (2003). In
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particular, the true covariance matrix for the period ending at week t, denoted by
St;k, is computed as the cumulative cross-product matrix of daily return residuals
over the forecast horizon of length k. The covariance forecast for the MSV models is
computed as described in Section 3.2.1. For the GARCH models, given the
parameter estimates, the k-step forecasts are obtained by recursion. For example, for
the MD-VECH model it can be shown that

EtðStþkÞ ¼ A0 þ ðA1A
0

1 þ B1B
0

1Þ � EtðStþk�1Þ,

where Et indicates expectation conditioning on time t information. For the Roll Win
and EWMA models, the multi-step ahead forecasts are computed by multiplying the
1-week forecast by the number of weeks. Denote by si;j;t;k the i; jth element of St;k

and by ŝi;j;t;k its forecast under any of the above models. Following Andersen et al.
(2001) and Ledoit et al. (2003), we assess the predictive accuracy of a given model in
terms of the root-mean-square error (RMSE) and mean absolute deviation (MAD)
measures, which are defined as

RMSEk ¼
1

p2

X
i;j

Eðŝi;j;t;k � si;j;t;kÞ
2

" #1=2
(18)

and

MADk ¼
1

p2

X
i;j

Ejŝi;j;t;k � si;j;t;kj, (19)

respectively.
5.4. Value-at-risk

It is not our objective to survey and rank the numerous approaches that have been
proposed for the calculation of VaR. In the present study we focus instead on the
relative performance of alternative methods within the variance–covariance
approach.

Several different portfolios can be constructed from the same universe of p assets,
corresponding to different trading positions. In this case it is common practice to
compute the individual portfolios’ VaR by using a single estimate of the p� p

covariance matrix. This is the approach adopted, for example, by Ledoit et al.
(2003). In the present study we consider the following four geographically identified
portfolios:
	
 A World portfolio: all 10 countries, equally weighted.

	
 A European portfolio: France, Germany, Italy, Switzerland and United King-
dom, equally weighted.

	
 A Pacific Rim portfolio: Australia, Hong Kong, Japan and Singapore, equally
weighted.

	
 A US only portfolio.
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Denote by ypt the realized return on a given portfolio of assets at time t. Given the
vector of portfolio weights w, and the estimate of the conditional variance, St;k, the
predicted portfolio variance is ŝp;t;k ¼ w0St;kw. The VaR at the 1% and 5% level is
computed for each portfolio using the predicted portfolio variance as

VaRp;t�1;kðaÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ŝp;t;k

p
F�1ðaÞ

where F�1ðaÞ is the ath percentile of the cumulative one-step-ahead distribution
assumed for portfolio returns. In addition to this commonly used method for
calculating the VaR, our Bayesian approach offers a second and, potentially, more
appealing alternative. Using the structure of the particle filter as shown in Section
3.2.1, one can draw directly from the predictive densities of the individual asset
returns, compute the portfolio return distribution and then calculate the quantile
(left-tail) of interest. For the MSV models we calculate the VaR in this way.

The accuracy of the VaR estimates is investigated using both unconditional and
conditional coverage tests along the lines of Lopez and Walter (2001). Define the
indicator variable I t as

I t ¼
1 if yp;toVaRp;t�1;

0 if yp;tXVaRp;t�1:

(
The cases I t ¼ 1 are exceptions or hits. For the VaR estimates to be well behaved,
the I t series must exhibit both serial independence and correct coverage (i.e., its
expected value must equal the nominal VaR level of a). To test correct coverage, let
T denote the total number of out-of-sample observations for which VaR is
computed, let g denote the number of VaR exceptions over T observations, and let â
be the ratio g=T . Then the hypothesis â ¼ a is tested with the statistic

LRuc ¼ 2flog½âgð1� âÞT�g� � log½agð1� aÞT�g�g,

which is distributed asymptotically as w2ð1Þ. In the presence of heteroschedasticity in
portfolio returns, a test for correct coverage given the information set at a given
point in time is likely to be a more relevant measure of VaR accuracy. Christoffersen
(1998) derives a test of conditional coverage by jointly testing for correct
unconditional coverage and independence in the hit rate series. The independence
hypothesis is tested against the alternative of first-order Markov dependence. Define
Tij as the number of observations in state j after having been in state i in the previous
period, p01 ¼ T01=ðT00 þ T01Þ and p11 ¼ T11=ðT10 þ T11Þ. Under the alternative

hypothesis the likelihood function is LA ¼ ð1� p01Þ
T00pT01

01 ð1� p11Þ
T10pT11

11 . Under the

null of independence, the likelihood is instead L0 ¼ ð1� pÞT00þT10pT01þT11 , where
p ¼ ðT01 þ T00Þ=T and p01 ¼ p11 ¼ p. The test statistic for independence is

LRind ¼ 2ðlog LA � log L0Þ,

which is also distributed asymptotically as w2ð1Þ. A likelihood ratio statistic can be
used to jointly test the two hypotheses and to test for correct conditional coverage.
Specifically, the test is based on the statistic LRcc ¼ LRuc þ LRind, which is

asymptotically distributed as w2ð2Þ.
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5.5. Empirical results

Table 7 contains the results on the forecasting accuracy of the different models
over three time horizons and two evaluation criteria. In terms of MAD, the
performance of the MSV model is very satisfactory, especially at the shorter
horizons, where MSV outperforms all other specifications. The next best performers
are the multivariate GARCH models that allow for time-varying correlations.
Among them, the DCC model yields the most accurate forecast at the 2 and 4 weeks
horizon, whereas the BEKK model does better at the 1-week forecast. There is little
material difference in the accuracy of the BEKK and the MD VECH model, with the
MD VECH model being marginally better. The forecasting ability of these models is
not improved by the inclusion of fat-tailed errors. The CCC model does always
worse than the other GARCH models, which indicates the importance of modeling
time-varying correlations. Finally, the simpler EWMA and Roll Win approaches are
significantly outperformed, especially at the 1 and 2 weeks horizons.

In terms of the RMSE criteria, the distinctions among the various models is less
clear. The MSV model still somewhat outperforms the other models at the short
horizons, whereas at the longer horizons the simpler EWMA and RollWin models
perform as well if not better. We may mention, however, that Ledoit et al. (2003) has
shown that the MAD criterion may be superior to the RMSE since it tends to be less
influenced by outliers.

Tables 8 and 9 report the summaries of the VaR estimation and testing results. In
terms of VaR exceptions, MSV performs convincingly both at the 1% and at the 5%
confidence level. Across portfolios its performance is uniformly never worse than any
other model. In particular, for the World and for the US portfolio MSV provides an
increased level of accuracy with respect to the other models. For the World portfolio,
only the BEKK-t model compares favorably to the MSV model. For the World
Table 7

Evaluation of forecasting accuracy

Model MAD RMSE

1-week 2-week 4-week 1-week 2-week 4-week

MSV 3.45 5.57 11.90 7.76 13.15 24.72

BEKK 3.63 5.73 12.03 7.77 13.20 24.72

BEKK-t 3.70 5.67 11.88 7.81 13.13 24.58

MD VECH 3.67 5.68 11.93 7.80 13.10 24.54

MD VECH-t 3.67 5.68 11.93 7.80 13.10 24.55

CCC 3.93 6.70 13.10 7.98 13.45 24.80

CCC-t 3.98 6.74 13.01 7.99 13.41 24.70

DCC 3.72 5.60 11.75 7.77 12.85 24.34

EWMA 3.94 6.81 12.83 8.14 13.05 22.29

RollWin 4.02 7.00 12.23 8.30 13.32 22.30

Reported are the mean absolute deviation and root-mean-square-error from Eqs. (19) and (18),

respectively. Model descriptions can be found in the main text.



ARTICLE IN PRESS

Table 8

Evaluation of VaR estimates

Model Hit rate p-values

LRuc LRind LRcc

1% 5% 1% 5% 1% 5% 1% 5%

World portfolio

MSV 0.010 0.049 0.35 0.22 0.53 0.27 0.33 0.01

MD VECH 0.016 0.061 0.23 0.27 0.61 0.15 0.43 0.19

MD VECH-t 0.008 0.065 0.61 0.14 0.80 0.02 0.85 0.02

BEKK 0.016 0.065 0.23 0.14 0.61 0.22 0.43 0.16

BEKK-t 0.010 0.059 0.97 0.37 0.75 0.12 0.95 0.20

CCC 0.024 0.070 0.13 0.28 0.19 0.01 0.04 0.02

CCC-t 0.019 0.066 0.11 0.21 0.10 0.01 0.08 0.03

DCC 0.014 0.059 0.42 0.37 0.66 0.12 0.66 0.20

EWMA 0.014 0.059 0.42 0.37 0.66 0.01 0.66 0.02

RollWin 0.022 0.069 0.02 0.07 0.02 0.03 0.00 0.02

European portfolio

MSV 0.012 0.049 0.69 0.37 0.70 0.12 0.86 0.20

MD VECH 0.016 0.053 0.23 0.75 0.11 0.22 0.13 0.45

MD VECH-t 0.008 0.055 0.61 0.61 0.80 0.26 0.85 0.47

BEKK 0.014 0.047 0.42 0.77 0.66 0.12 0.66 0.28

BEKK-t 0.010 0.049 0.97 0.93 0.75 0.15 0.95 0.35

CCC 0.018 0.062 0.03 0.54 0.11 0.04 0.02 0.01

CCC-t 0.016 0.060 0.06 0.58 0.20 0.08 0.06 0.04

DCC 0.016 0.047 0.23 0.77 0.11 0.02 0.13 0.07

EWMA 0.014 0.047 0.42 0.77 0.66 0.02 0.66 0.07

RollWin 0.026 0.055 0.00 0.61 0.41 0.26 0.01 0.47

Figures refer to weekly VaR forecasts for different models at the 1% and 5% level. Reported are the

average hit rate and the p-values for the unconditional coverage test ðLRucÞ, independence test ðLRindÞ, and

conditional coverage test ðLRccÞ. Tests and model descriptions can be found in the main text.
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portfolio the alternative specifications (with the exception of the EWMA model)
tend to underestimate the VaR whereas for the US Portfolio they tend to be too
conservative. For the Pacific Rim and European portfolios the differences in model
performance becomes somewhat blurred. The CCC specification appears to perform
the worst. In terms of the unconditional coverage test LRuc, the performance of most
models is adequate with the possible exception of the RollWin and CCC models and
some of the GARCH models on the US portfolio. In sum, our MSV model performs
favorably in relation to these models.
6. Conclusion

In this paper, we have proposed and analyzed a new multivariate model with time
varying correlations. The model contains several features (for example fat tails and
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Table 9

Evaluation of VaR estimates

Model Hit rate p-values

LRuc LRind LRcc

1% 5% 1% 5% 1% 5% 1% 5%

Pacific rim portfolio

MSV 0.012 0.051 0.22 0.27 0.49 0.45 0.26 0.41

MD VECH 0.016 0.051 0.23 0.91 0.61 0.75 0.43 0.95

MD VECH-t 0.010 0.065 0.97 0.14 0.75 0.36 0.95 0.22

BEKK 0.018 0.057 0.12 0.48 0.57 0.56 0.25 0.66

BEKK-t 0.012 0.057 0.69 0.48 0.70 0.56 0.86 0.66

CCC 0.022 0.061 0.02 0.19 0.04 0.33 0.00 0.11

CCC-t 0.022 0.061 0.04 0.14 0.05 0.41 0.03 0.19

DCC 0.012 0.055 0.69 0.61 0.71 0.62 0.86 0.78

EWMA 0.012 0.059 0.69 0.37 0.70 0.86 0.86 0.66

RollWin 0.022 0.051 0.02 0.91 0.02 0.57 0.00 0.84

US portfolio

MSV 0.011 0.053 0.42 0.75 0.66 0.64 0.66 0.85

MD VECH 0.010 0.031 0.97 0.04 0.75 0.52 0.95 0.10

MD VECH-t 0.008 0.035 0.61 0.11 0.80 0.66 0.85 0.25

BEKK 0.012 0.033 0.69 0.07 0.70 0.59 0.86 0.16

BEKK-t 0.010 0.031 0.97 0.04 0.75 0.52 0.95 0.10

CCC 0.018 0.040 0.41 0.04 0.39 0.30 0.33 0.03

CCC-t 0.016 0.039 0.48 0.03 0.28 0.23 0.25 0.04

DCC 0.010 0.045 0.97 0.61 0.75 0.38 0.95 0.60

EWMA 0.016 0.061 0.23 0.27 0.61 0.42 0.43 0.40

RollWin 0.014 0.055 0.42 0.61 0.66 0.26 0.66 0.47

Figures refer to weekly VaR forecasts for different models at the 1% and 5% level. Reported are the

average hit rate and the p-values for the unconditional coverage test ðLRucÞ, independence test ðLRindÞ, and

conditional coverage test ðLRccÞ. Tests and model descriptions can be found in the main text.
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jump components) that are particularly relevant in the modeling of financial time
series. Our fitting approach, which relies on tuned MCMC methods, was shown to
be scalable in terms of both the multivariate dimension and the number of factors.
This leads us to believe that this is first viable estimation approach for high-
dimensional stochastic volatility models. In the paper we also provide a method for
finding the marginal likelihood of the model. This criterion is useful in comparing
the general model with various special cases, say defined by the presence or absence
of jumps and fat-tails, and in identifying the correct number of pervasive factors. A
large-scale simulation study shows that our estimation and inference procedures
are both accurate and reliable. An extensive application to international
equity return data shows that our proposed model performs favorably in relation
to various alternative models in terms of the estimation of the predictive covariance
and VaR.
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