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Inference

• Let’s consider a simple problem of inference.
• Suppose I am interested in the proportion of students in this class who are

born in Beijing. This will be denoted as θ
• In particular, I am interested in whether half of the class is born in Beijing

(θ = 0.5) or whether it is less than half (θ < 0.5).
• I am unable to ask everybody in the class if they were born in Beijing, I can

only take a sample.
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Classical Framework

• In the classical framework θ is NOT a random variable. It is a fixed number
that is unknown.

• Using the sample, an estimate θ̂ can be obtained.
• A 95% confidence interval around θ̂ can be constructed
• The null hypothesis θ = 0.5 can be tested against the alternative θ < 0.5
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Intepretation in Classical Framework

• Suppose the 95% confidence interval is (0.3-0.45). How is this interpreted?
• Correct (classical) interpretation:

• If an infinite number of samples is taken, 95% of the confidence intervals
constructed in this way will contain the true value θ.

• Incorrect (classical) interpretation:
• There is a 95% probability that θ is in the interval 0.35-0.45.
• There is a 95% probability that θ is in the interval 0.35-0.45.

• Reason: θ is not a random variable.
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Intepretation in Classical Framework

• Suppose θ̂ = 0.4 and the Null is rejected at the 5% level of significance.
• Correct (classical) interpretation:

• If the null were true than the probability of observing θ̂ ≤ 0.4 is less than the
level of significance (5%). Therefore the null is rejected and we conclude
θ̂ ≤ 0.5

• Incorrect (classical) interpretation:
• The probability that θ ≤ 0.5 is 95%.
• The probability that θ ≤ 0.5 is 95%.

• Reason: θ is not a random variable.
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Bayesian Framework

• There is another way to do statistical inference known as the Bayesian
Framework.

• It relies on a very different understanding of probability.
• In the Bayesian framework probability distributions represent uncertainty

about quantities that are unknown.
• In our example, under the Bayesian framework θ IS a random variable.
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Why Bayes?

• Let y = (y1, y2, . . . , yn)′ be the data in the sample, and θ be the unknown
parameter of interest.

• Inferences about θ are based on the distribution p(θ|y). This can be found
using Bayes’ Rule

p(θ|y) = p(y|θ)p(θ)
p(y) (1)

• Consider each term in the equation
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Posterior Distribution

• The term p(θ|y) is called the posterior distribution.
• The word ‘posterior’ comes from a Latin word meaning ‘after’
• This represents our belief about θ after seeing the data.
• All inference is based on this quantity.
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Likelihood

• The term p(y|θ) is called the likelihood.
• This should be familiar since it is the same ‘likelihood’ used in maximum

likelihood.
• This represents our belief about how the data are generated for a given value

of θ.
• In the example about students born in Beijing, it will be a Bernoulli

distribution.
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Normalising Constant

• The term p(y) can be found using the formula

p(y) =
∫
θ

p(y, θ)dθ =
∫
θ

p(y|θ)p(θ)dθ (2)

• However, since this term does not contain θ it forms part of the normalising
constant of p(θ|y)

• Sometimes we write Bayes Rule as:

p(θ|y) ∝ p(y|θ)p(θ) (3)
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The Prior

• The term p(θ) is called the prior distribution.
• The word ‘prior’ comes from a Latin word meaning ‘before’
• This represents our belief about θ before seeing the data.
• This is the most controversial part of the Bayesian Framework
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Uniform Prior

• Suppose I know nothing about the proportion of students born in Beijing
before I collect data.

• In this case p(θ) ∼ U(0, 1).
• Since the University is in Beijing, I could place less weight on p(θ) close to 0.
• Since Zhong Cai is a good university it attracts students from all of China. I

could also place less weight on p(θ) close to 1.
• However, I will use the assumption p(θ) ∼ U(0, 1).
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Computing the posterior

Let yi = 1 if the student is born in Beijing and yi = 0 otherwise:

p(θ|y) ∝ p(y|θ)p(θ) (4)
n∏
i=1

θyi(1− θ)(1−yi) × 1 (5)

θ

n∑
i=1

yi

(1− θ)

n∑
i=1

(1−yi)
(6)

θ

n∑
i=1

yi

(1− θ)
n−

n∑
i=1

(yi)
(7)

Does this look familiar?
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Normalizing Constant and Kernel

What are the normalizing constantnormalizing constant and kernelkernel of the
Beta density?

Beta(x; a, b) = Γ(a+ b)
(Γ(a)Γ(b))x

a−1(1− x)b−1 (8)
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Matching

• The kernel of the x ∼ Beta(a, b) is

xa−1(1− x)b−1 (9)

• The kernel of the posterior p(θ|y)

θ

n∑
i=1

yi

(1− θ)
n−

n∑
i=1

(yi)
(10)

• Match x in Equation 9 with θ in Equation 10. What about a and b?

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 16 / 92



Posterior

• Match a− 1 in Equation 9 with
n∑
i=1

yi in Equation 10

• Match b− 1 in Equation 9 with n−
n∑
i=1

yi in Equation 10

• The posterior is

θ|y ∼ Beta
(

n∑
i=1

yi + 1, n−
n∑
i=1

yi + 1
)

(11)
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Inference

• In classical inference there is Confidence Interval
• In Bayesian inference there is a similar idea called Credible Interval
• Find the quantiles at 2.5% and 97.5% to form a 95% credible interval
• You can do this in R using qbeta.
• How do we intepret a 95% credible interval (L,U)?
• It is just Pr (L ≤ θ ≤ U) = 0.95
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Point Estimates

• Suppose we want a single estimate for θ. There are a few choices.
• Posterior Median θ∗ :

∫ θ∗

0 p(θ|y)dθ = 0.5
• Posterior Mode: argmaxθ p(θ|y)
• Posterior Mean: Eθ|y[θ]

• For the Beta distribution, you can look these up in a textbook.
• Can you work out the posterior median and posterior mode using R?
• Can you approximate the posterior mean using R?
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Testing

• In the Classical framework there is the concept of a Hypothesis test.
• For example H0 : θ = 0.5 H1 : θ < 0.5
• In the Bayesian framework just look at posterior probabilities.
• For example Pr(θ < 0.5)
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Classical v Bayesian

• Many statisticians argue about whether the Classical or Bayesian framework
is correct.

• Regardless of which one you think is correct, you should understand both.
• In particular you should understand how to make interpretations in both

frameworks.
• The most important distinction is that parameters are NOT random variables

in the classical framework but parameters ARE random variables in the
Bayesian framework.
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Gaussian Data

• Suppose we would like to conduct Bayesian inference on the average height
of adult males in a country.

• The observations are iid yi ∼ N(µ, σ2).
• For now just consider inference on the average height treating the variance of

height σ2 as known. We want p(µ|y, σ2).
• What is a reasonable prior on µ?
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Prior on µ

• The prior p(µ) can also be normally distributed µ ∼ N(η, τ2)
• Different sets of values of η and τ2 can be used.

• p(µ) ∼ N(1.8, 0.01)
• p(µ) ∼ N(1.74, 0.0025)
• p(µ) ∼ N(1.78, 0)
• p(µ) ∼ N(η, τ2) τ2 →∞

• These represent prior beliefs before we see any data.
• Let the the prior on µ be independent of σ2. We say µ and σ2 are

independent a priori.
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What will be the posterior?

• The prior is N(η, τ2)
• The likelihood is N(µ, σ2)
• Maybe the posterior is also normal N(a, b)?
• What does the kernel of the normal look like?
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Kernel of the Normal

p(x) = (2πb)−1/2exp

{
−1

2

[
(x− a)2

b

]}
∝ exp

{
−1

2

[
(x− a)2

b

]}
∝ exp

{
−1

2

[
(x2 − 2ax+ a2

b

]}
∝ exp

{
−1

2

[
(x2 − 2ax

b

]}
exp

{
−1

2

[
a2

b

]}
∝ exp

{
−1

2

[
(x2 − 2ax

b

]}

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 25 / 92



Obtain Posterior

p(µ|y, σ2) ∝ p(y|µ, σ2)p(µ|σ2)
∝ p(y|µ, σ2)p(µ)

∝

(
n∏
i=1

exp

{
−1

2

[
(yi − µ)2

σ2

]})
exp

{
−1

2

[
(µ− η)2

τ2

]}

∝ exp

−
1
2


n∑
i=1

(yi − µ)2

σ2


 exp

{
−1

2

[
(µ− η)2

τ2

]}
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Obtain Posterior

∝ exp

−
1
2


n∑
i=1

(yi − µ)2

σ2 + (µ− η)2

τ2




∝ exp

−
1
2


n∑
i=1

(
y2
i − 2yiµ+ µ2)

σ2 +
(
µ2 − 2ηµ+ η2)

τ2




∝ exp

−
1
2


n∑
i=1

(y2
i )− 2µ

n∑
i=1

yi + nµ2

σ2 +
(
µ2 − 2ηµ+ η2)

τ2



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Obtain Posterior

∝ exp

−
1
2

( n

σ2 + 1
τ2

)
µ2 − 2


n∑
i=1

yi

σ2 + η

τ2

µ+


n∑
i=1

(y2
i )

σ2 + η2

τ2





∝ exp

−
1
2

( n

σ2 + 1
τ2

)
µ2 − 2


n∑
i=1

yi

σ2 + η

τ2

µ




Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 28 / 92



Matching

Kernel of Normal

exp

{
−1

2

[
1
b
x2 − 2a

b
x

]}
Match x to µ. Then find a and b

exp

−
1
2

( n

σ2 + 1
τ2

)
µ2 − 2


n∑
i=1

yi

σ2 + η

τ2

µ


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Matching

Match coefficient of µ2 and x2

b =
(
n

σ2 + 1
τ2

)−1
,

1
b

= n

σ2 + 1
τ2 (12)

Match coefficient of µ and x

a =
(
n

σ2 + 1
τ2

)−1


n∑
i=1

yi

σ2 + η

τ2

, ab =


n∑
i=1

yi

σ2 + η

τ2

 (13)
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Posterior

The posterior is

µ|y, σ2 ∼ N

( n

σ2 + 1
τ2

)−1


n∑
i=1

yi

σ2 + η

τ2

 ,

(
n

σ2 + 1
τ2

)−1

 (14)
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Coding Time

Write code to plot the density of the posterior (N(a, b) with a,b defined
previously). Use the values:

• σ2 = 0.01
• n = 10
•
∑
yi = 17.34

• η = 1.8
• τ2 = 0.25
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Tips for code

• Generate a grid of values using x=seq(1.55,1.85,0.001)
• Write code to work out a and b
• Evaluate density using y=dnorm(x,a,sqrt(b))
• Plot using plot(x,y,”l”)
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Different Values

Keep σ2 = 0.01, n = 10 and
∑
yi = 17.34. Change

• η = 1.6
• τ2 = 0.25

Now Consider:
• η = 1.6
• τ2 = 0.001
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Plot

1.55 1.60 1.65 1.70 1.75 1.80 1.85
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Let τ 2 get big

• In the limiting case where τ →∞, the prior distribution becomes improper
• In this limiting case p(µ) ∝ k where k is a constant. This is called a flat prior
• It can be verified that as τ →∞, the posterior mean a→

∑
yi/n and

b→ σ2/n.
• When p(µ) ∝ k µ|y, σ2 ∼ N(

∑
yi/n, σ

2/n)
• This leads similar inference as in the classical case (σ2 known).
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Let n get big

Now consider:
• σ2 = 0.01
• n = 1000
•
∑
yi = 1734

• η = 1.6
• τ2 = 0.001

What do you think happens when n→∞?
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Plot
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Summary

• If the prior variance is large:
• The posterior mean will be closer to the sample mean.
• The posterior variance is larger.

• If the prior variance is small:
• The posterior mean will be closer to the prior mean.
• The posterior variance is smaller.

• As the sample size gets larger, prior information is dominated by the
information in the likelihood.
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More terminology

• Improper prior: A prior that does not integrate to 1 for example the flat prior
p(µ) ∝ 1 where µ ∈ R

• Proper prior: A prior that does integrate to 1.
• Noninformative Prior: A prior that has a small effect on on the posterior. It

may be proper or improper
• Conjugate Prior: A prior that has the same distribution as the posterior
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Examples of Conjugacy

• Beta prior with Bernoulli likelihood give Beta posterior
• We say “Beta is conjugate to the Bernoulli”.

• Gaussian prior with Gaussian likelihood gives Gaussian posterior
• We say “Gaussian is conjugate to the Gaussian”.

• Gamma prior with Poisson likelihood gives Gamma posterior
• We say “Gamma is conjugate to the Poisson”.

• Not all priors are conjugate.
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What about σ2

• In the previous section we ignored σ2.
• The posterior we looked at was p(µ|σ2,y)
• In reality we also want to do inference on σ2.
• Also since we have uncertainty about σ2 it doesn’t make sense to base

inference on p(µ|σ2,y)
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Inference is based on Marginal Posterior

• Inference for µ will be based on

p(µ|y) =
∫
σ2
p(µ, σ2|y)dσ2 (15)

• Similarly inference for σ2 will be based on

p(σ2|y) =
∫
µ2
p(µ, σ2|y)dµ (16)

• In both cases
p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2) (17)
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An interesting integral

• Another way to write the integral for p(µ|y) is as∫
σ2
p(µ, σ2|y)dσ2 =

∫
σ2
p(µ|σ2,y)p(σ2|y)dσ2

• Here is should be clear that we are ‘integrating’ out or ‘averaging’ out the
uncertainty in σ2

• The ‘weights’ for this average are p(σ2|y)
• The same applies to

∫
µ
p(µ, σ2|y)dµ
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How do we do the integration?

• In many cases integration can be done by recognising a distribution.
• Let’s consider the case where p(µ, σ2) ∝ (σ2)−1

• This is the same as a flat prior on µ and a flat prior on log(σ2).
• We will find p(σ2|y)
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Two steps

1 Recognize a distribution for µ
• To make this integrate to 1 we must have normalizing constant.
• Also we cannot remove any terms involving σ2

2 Recognize a distribution in σ2
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Find posterior

p(σ2|y) =
∫
µ

p(y|σ2, µ)p(σ2, µ)dµ

∝
∫
µ

(
n∏
i=1

(2πσ2)−1/2exp

[
− (yi − µ)2

2σ2

])
(σ2)−1dµ

∝ (2πσ2)−n/2(σ2)−1
∫
µ

n∏
i=1

exp

[
− (yi − µ)2

2σ2

]
dµ

∝ (σ2)−n
2−1

∫
µ

n∏
i=1

exp

[
− (yi − µ)2

2σ2

]
dµ
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The integral

Consider the integral ∫
µ

n∏
i=1

exp

[
− (yi − µ)2

2σ2

]
dµ (18)

With similar working as before we can show∫
µ

n∏
i=1

exp

[
− (yi − µ)2

2σ2

]
dµ =

∫
µ

exp

[
−
∑

(y2
i )− 2µ

∑
yi + nµ2

2σ2

]
dµ
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=
∫
µ

exp

[
−−2µ

∑
yi + nµ2

2σ2

]
exp

[
−
∑

(y2
i )

2σ2

]
dµ

= exp

[
−
∑

(y2
i )

2σ2

] ∫
µ

exp

[
−−2µȳ + µ2

2(σ2/n)

]
dµ

= exp

[
−
∑

(y2
i )

2σ2

]
exp

[
ȳ2

2(σ2/n)

]
×∫

µ

exp

[
− ȳ

2 − 2µȳ + µ2

2(σ2/n)

]
dµ

where ȳ =
∑
yi/n
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= exp

[
−
∑

(y2
i )− nȳ2

2σ2

]
×∫

µ

exp

[
− (µ− ȳ)2

2(σ2/n)

]
dµ

= exp

[
−
∑

(y2
i )− nȳ2

2σ2

]
×(2π)1/2(σ2/n)1/2×∫

µ

(2π)−1/2(σ2/n)−1/2exp

[
− (µ− ȳ)2

2(σ2/n)

]
dµ

= exp

[
−
∑

(y2
i )− nȳ2

2σ2

]
× (2π)1/2(σ2)1/2n−1/2

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 50 / 92



Back to the original aim

Now that µ has been integrated out we can focus on the posterior of σ2

p(σ2|y) ∝ (σ2)−n
2−1

∫
µ

n∏
i=1

exp

[
− (yi − µ)2

2σ2

]
dµ

∝ (σ2)−n
2−1exp

[
−
∑

(y2
i )− nȳ2

2σ2

]
× (2π)1/2(σ2)1/2n−1/2

∝ (σ2)−
(n−1)

2 −1exp

[
−
∑

(y2
i )− nȳ2

2σ2

]

Can we recognise this?
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Inverse Gamma disribution

The kernel of the inverse Gamma disribution is given by

p(x) ∝ x−a−1exp(−b/x) (19)

We have
p(σ2|y) ∝ (σ2)−

(n−1)
2 −1exp

[
−
∑

(y2
i )− nȳ2

2σ2

]
(20)

Match the parameters

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 52 / 92



• The posterior is

σ2|y ∼ IG
(
n− 1

2 ,

∑
(y2
i )− nȳ2

2

)
(21)

• All inference on the mean is based on this distribution.
• A point estimate can be given by Eσ2|y[σ2] =

∑
(y2

i )−nȳ2

n−2 .
• Credible intervals for the mean can also be found.
• We can do a similar process to show that the posterior p(µ|y) follows a

Student t distribution.

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 53 / 92



This is annoying

• Integrating out the parameters involves tedious mathematics.
• Even worse in some cases it does not even lead to a posterior that we can

recognize.
• For example, for the prior µ ∼ N(η, τ2), then p(σ2|y) not Inverse Gamma. It

is unrecognizable
• What can we do?
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Markov chain Monte Carlo

• Although we cannot recognize the posterior, we do know the density.
• We may only know the kernel of the density and not the normalizing constant.
• Is it possible to at least draw a sample from the joint posterior?
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Inference by MCMC

• Consider the case where p(µ, σ2) = p(µ)p(σ2) where
• µ ∼ N(η, τ2)
• p(σ2) ∝ (σ2)−1

• In this case the posterior of µ is:

p(µ|y) ∝
[∑

(yi − µ)2
]−n/2

exp

[
− (µ− η)2

2τ2

]
(22)

• This cannot be recognized.
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Metropolis Algorithm

• Use the Metropolis algorithm to simulate a sample from µ|y where the target
density is given by Equation 22.

• Use the values:
• n = 10
•
∑

yi = 17.34
•
∑

y2
i = 32

• η = 1.8
• τ2 = 0.25

• Make a Monte Carlo approximation of E[µ|y]
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Summary

• Bayesian Inference treats all unknown quantities including parameters as
random variables

• All inference is based on the posterior
• In some cases the posterior can be evaluated and recognized.
• In other cases algorithms such as the Metropolis algorithm can be used.
• Next week we will look at improvements on the basic Metropolis algorithm.
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Sampling the Posterior

• Recall the discussion: why do we need sampling algorithm?
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The Bayesian Linear Regression model
• Recall the linear regression model

yi = β0 + β1x1 + ...+ βpxp + εi

where εi ∼ N(0, σ2)
• We are intertested in the joint distribution of β0, β1, ...βp and σ2

• You know how to get that by OLS under the Gaussian assumption:

p(β, σ2) = p(β|σ2)p(σ2)

where β|σ2 ∼ N
[
(x′x)−1x′y, (x′x)−1σ2] and σ2 ∼ χ2(n− p).

• The Bayesian approach:
• We know by the Bayes’ rule

p(β, σ2|y, x) ∝ p(y|β, σ2, x)p(β, σ2)
= p(y|β, σ2, x)p(β|σ2)p(σ2)

where p(y|β, σ2, x) is the likelihood for the model and
p(β, σ2) = p(β|σ2)p(σ2) is the prior information of the parameters and
p(β, σ2|y, x) is called the posterior.

• The Bayesian way: Let’s just draw random samples from p(β, σ2|y, x).
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Sampling the Posterior
1 Write down the likelihood function.
2 Specify the prior

• The distribution of β given σ2 that you know a priori.
• The distribution of σ2 (it has to be positive).

3 Write down the posterior.
4 Use Gibbs to draw

Set a initial value for β(0) and σ2(0).
1 Draw a random vector β(1) from p(β(1)|σ2(0), y, x)
2 Draw a random number σ2(1) from p(σ2(1)|β(1), y, x)
3 Draw a random vector β(2) from p(β(2)|σ2(1), y, x)
4 Draw a random number σ2(2) from p(σ2(2)|β(2), y, x)
5 Draw a random vector β(3) from p(β(3)|σ2(2), y, x)
6 Draw a random number σ(3) from p(σ2(3)|β(3), y, x)
7 ...
8 ...

5 Summarize β(1), β(2), ..., β(n)

6 Summarize σ(1), σ(2), ..., σ(n)

7 Well done!
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A real R example
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Using MCMC for Bayesian Inference

• Today we look at specific examples of using MCMC to do Bayesian inference
• We will look at different ways of constructing MCMC for the same model
• In particular

• Gibbs Sampler
• Method of Composition
• Exact Inference
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Breaking down further

• For each step within Method of Composition and Gibbs there may be a few
options.

• Generate from a recognized distribution
• Generate using Metropolis Hastings with a Laplace approximation as proposal.
• Generate using Metropolis Hastings with a random walk proposal (i.e.

Metropolis).
• Any combination of these

• In theory all schemes converge, but some schemes may converge faster than
others.

• Also each scheme will have different Monte Carlo efficiency and
computational efficiency.
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Our Example

• The model is yi ∼ N(µ, σ2) with prior p(µ, σ2) ∝ (σ2)−1

• The posterior is

p(µ, σ2|y) ∝ (σ2)−(n/2)−1exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}
(23)

• The algorithms will produce a sample from this posterior(
µ[1], σ2[1]

)
,
(
µ[2], σ2[2]

)
, . . . ,

(
µ[M ], σ2[M ]

)
∼ p(µ, σ2|y)

• The data is y=c(4.88, 2.71, 5.77, 4.26, 4.10, 2.60, 6.47, 3.76, 2.35, 2.91)
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Four densities

• There are four densities that we will use
• Conditional posteriors:

• p(µ|σ2,y) (Normal)
• p(σ2|µ,y) (Inverse Gamma)

• Marginal posteriors:
• p(µ|y) (Student t)
• p(σ2|y) (Inverse Gamma)

• These can be combined in different ways to obtain a sample from the joint
posterior p(µ, σ2|y)
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Steps

• Consider the following steps
• Obtain conditional posterior for each parameter.
• Recognize conditional posterior for each parameter.
• Integrate to get marginal posterior for each parameter.

• Sometimes Step 2 and 3 are impossible.
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Four densities

• In this example, we can recognize/ integrate to get all four densities
• Conditional posteriors:

• p(µ|σ2,y) ∼ N(ȳ, σ2/n)
• p(σ2|µ,y) ∼ IG(n/2,

∑
y2
i − nµ2/2)

• Marginal posteriors:
• p(µ|y) ∼ tn−1(ȳ, s2/n)
• p(σ2|y) ∼ IG((n− 1)/2,

∑
y2
i − nȳ2/2)

• Here ȳ =
∑
yi/n and s2 =

∑
(yi − ȳ)2/(n− 1)
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Gibbs Sampler

• The first option is the Gibbs Sampler.
• It is the most straightforward.
• Inside a single loop:

1 Generate from p(σ2|µ,y)
2 Generate from p(µ|σ2,y)

• The order can be swapped around.
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Simulating

• In this example both distributions are recognisable. Therefore the Gibbs
sampler at step i can be

1 Generate σ2[i] ∼ IG(n2 ,
∑

y2
i−nµ

[i−1]2

2 )
2 Generate µ[i] ∼ N(ȳ, σ2[i]

/n)
• Always use the current values of the parameters.
• If you cannot recognize the distributions then use the Metropolis Hastings

algorithm at each step.
• This is called Metropolis Hastings within Gibbs.
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Coding time

• Code up the Gibbs sampler on the previous slide.
• Note there is no function for generating from an inverse gamma distribution

in R (although you can download packages to do this).
• Instead use Metropolis Hastings to generate σ2 within Gibbs.
• You can either use a random walk proposal or a Laplace proposal. It is up to

you.
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Dealing with parameter constraints

• In this example σ2 > 0 since it is a variance.
• In Metropolis Hastings, it is possible to propose a value that σ2[new]

< 0
• There are a few ways to handle this

1 Reject any σ2[new]
< 0

2 Reparameterise
3 Constrain proposal

• We will look at the first two in detail
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Reject

• By far the simplest option is to reject any value that does not satisfy
parameter constraints.

• The rationale is that the target distribution is 0 if the constraints are not
satisfied.

• Recall the Metropolis Hastings ratio

α = min

(
1, p(θ

new)q(θnew → θold)
p(θold)q(θold → θnew)

)
(24)

• This is often (but not always) inefficient and leads to low acceptance rates.
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Reparameterize

• Another option is to reparametize. For example instead of simulating σ2 we
can simulate τ = log

(
σ2)

• If we have a sample (τ [1], . . . , τ [M ]) then the sample from p(σ2|y) is(
σ2[1]

, . . . , σ2[M ]
)

=
(
exp(τ)[1], . . . , exp(τ)[M ]

)
(25)

• How do we simulate τ?
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Reparameterization

Let the target density be
p(σ2) (26)

The density of τ = log(σ2) is
p(eτ )J (27)

Where J =
∣∣∣dσ2

dτ

∣∣∣ = eτ and is called the Jacobian of the transformation
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Jacobian

Remember densities need to be integrated to find probabilities. So one way to
think of a density is as

p(σ2)dσ2 (28)

Then
dσ2

dτ
= eτ (29)

implying
dσ2 = eτdτ (30)

The target density of τ is
p(eτ )eτdτ (31)
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Coding time

• Try to obtain a sample from p(τ |y) using the Metropolis Hastings algorithm.
• Wherever you see σ2 in the target density in your R Code replace with exp(τ)
• Don’t forget the Jacobian
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Inference

• We have produced a sample from the joint posterior p(µ, σ2|y).
• We can do joint inference, for example to determine Pr(µ < 5, σ2 > 1|y) we

only need to count the proportion of our sample where µ < 5, σ2 > 1
• We can also do inference on the marginal posterior by simply ignoring the

other parameter.
• We can do this with no integration!

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 78 / 92



Monte Carlo Estimate

• How to find the posterior mean E(µ|y)?
• Use the sample µ[1], . . . , µ[M ] ignoring σ2

• We can find a Monte Carlo estimate

E(µ|y) ≈M−1
M∑
j=1

µ[i] (32)

• The 95% credible interval can be found by finding quantiles using the R
function quantile

• Try it!
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Method of Composition

• An option that is often better than Gibbs is Method of Composition.
• Option 1

• Simulate from p(σ2|y)
• Simulate from p(µ|σ2,y)

• Option 2
• Simulate from p(µ|y)
• Simulate from p(σ2|µ,y)

• Both will work. The decision usually comes down to whichever integration is
easier.
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Option 1

• To do Option 1, we need

p(σ2|y) =
∫
µ

p(µ, σ2|y)dµ (33)

and
p(µ|σ2,y) (34)
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Option 1

• The algorithm is

1 Simulate σ2[i] ∼ IG
(
n−1

2 ,

∑
y2

i−nȳ
2

2

)
2 Simulate µ[i] ∼ N

(
ȳ, σ

2[i]

n

)
• We are lucky since both distributions are recognisable.
• If they are not recognisable then Metropolis Hastings can be used in either

Step 1 or Step 2 or both.
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Option 2

• To do Option 2, we need

p(µ|y) =
∫
σ2
p(µ, σ2|y)dσ2 (35)

and
p(σ2|µ,y) (36)
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Option 2

• The algorithm would be

1 Simulate µ[i] ∼ tn−1

(
ȳ, s

2

n

)
2 Simulate σ[i] ∼ IG

(
n
2 ,

∑
y2

i−nµ
[i]2

2

)
• Again both distributions are recognisable.
• If they are not recognisable then Metropolis Hastings can be used in either

Step 1 or Step 2 or both.
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Coding time

• Obtain a joint sample using Option 1.
• Since there is no function to randomly generate from an inverse gamma

distribution use Metropolis Hastings to carry out Step 1.
• Make sure you deal with the constraint σ2 > 0 correctly.
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Exact Inference

• For this example it is not actually necessary to do MCMC.
• We already saw

σ2|y ∼ IG
(
n− 1

2 ,

∑
y2
i − nȳ2

2

)
(37)

• We already saw

µ|y ∼ tn−1

(
ȳ,
s2

n

)
(38)
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Point Estimates

• To find the posterior mean E(σ2|y) we just need to know the expected value
of an Inverse Gamma distribution.

• The expected value of an IG(a, b) is b/(a− 1)
• In our example

E(σ2|y) =
∑
y2
i − nȳ2

n− 3 (39)

• Similarly E(µ|y) = ȳ
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Credible Intervals

• Credible intervals can be found using the inverse CDF of the Inverse Gamma
and t distributions.

• For µ this can be found using the R function qt
• It is a little tricky since qt gives the quantiles for a standardised t.
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A word of warning

• In the posterior p(µ, σ2|y) µ and σ2 are dependent
• However if we sample from both marginal posteriors p(µ|y) and p(σ2|y), the

sample values of µ[j] and σ2[j] are independent.
• If we simulate from p(µ|y) and p(σ2|y) this does NOT give a sample from

the joint posterior
• For Gibbs and Method of Composition µ[j] and σ2[j] are dependent.
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Steps to constructing MCMC algorithms

1 Write down posterior
• Simply multiply likelihood and prior. Very Easy

2 Do I recognize any distributions in the parameters?
• May require some algebra.

3 Can I integrate out any parameters?
• Be careful with normalizing constants.
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Steps to constructing MCMC algorithms

• If you can only do Step 1 you can use Metropolis Hastings within Gibbs.
• If you can do Step 2 you can use Gibbs but may not need Metropolis

Hastings for all the parameters.
• If you can do Step 3, you may be able to do Method of Composition.
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Suggested Reading

• Gelman et all (2014). Bayesian data analysis (Vol. 2). Chapman &
Hall/CRC., Chapter 3
Monte Carlo Statistical Methods Book by Christian P Robert and George
Casella. (2004 edition)
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