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Today we are going to learn...

© Classical v Bayesian

© Inference for Gaussian Data

© Dealing with more than one parameter

@ MCMC and Bayesian Inference

e Linear Regression with Bayesian Posterior Sampling
e Gibbs Sampling

@ Method of Composition

© Exact Inference
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Inference

e Let's consider a simple problem of inference.

e Suppose | am interested in the proportion of students in this class who are
born in Beijing. This will be denoted as ¢

e In particular, | am interested in whether half of the class is born in Beijing
(6 = 0.5) or whether it is less than half (6 < 0.5).

e | am unable to ask everybody in the class if they were born in Beijing, | can

only take a sample.
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Classical Framework

In the classical framework 0 is NOT a random variable. It is a fixed number
that is unknown.

Using the sample, an estimate 6 can be obtained.

A 95% confidence interval around @ can be constructed

The null hypothesis # = 0.5 can be tested against the alternative § < 0.5
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Intepretation in Classical Framework

e Suppose the 95% confidence interval is (0.3-0.45). How is this interpreted?
e Correct (classical) interpretation:
e If an infinite number of samples is taken, 95% of the confidence intervals
constructed in this way will contain the true value 6.
e Incorrect (classical) interpretation:
e There is a 95% probability that 0 is in the interval 0.35-0.45.
e There is a 95% probability that @ is in the interval 0.35-0.45.
e Reason: 6 is not a random variable.
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Intepretation in Classical Framework

Suppose 6 = 0.4 and the Null is rejected at the 5% level of significance.

Correct (classical) interpretation:

o |f the null were true than the probability of observing 6 < 0.4 is less than the
level of significance (5%). Therefore the null is rejected and we conclude
0 <05

Incorrect (classical) interpretation:

e The probability that 6 < 0.5 is 95%.
e The probability that 6 < 0.5 is 95%.

Reason: 6 is not a random variable.
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Bayesian Framework

There is another way to do statistical inference known as the Bayesian
Framework.

It relies on a very different understanding of probability.

In the Bayesian framework probability distributions represent uncertainty
about quantities that are unknown.

e In our example, under the Bayesian framework 6 IS a random variable.
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Why Bayes?

o Let y = (y1,Y2,.-.,Yn)" be the data in the sample, and 6 be the unknown
parameter of interest.

e Inferences about 6 are based on the distribution p(f|y). This can be found
using Bayes' Rule

_ p(yl0)p(9)

p(fly) o)

e Consider each term in the equation

(1)
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Posterior Distribution

The term p(f|y) is called the posterior distribution.

The word ‘posterior’ comes from a Latin word meaning ‘after’

This represents our belief about 6 after seeing the data.

All inference is based on this quantity.
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Likelihood

e The term p(y|d) is called the likelihood.

e This should be familiar since it is the same ‘likelihood’ used in maximum
likelihood.

o This represents our belief about how the data are generated for a given value
of 6.

o In the example about students born in Beijing, it will be a Bernoulli
distribution.
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Normalising Constant

e The term p(y) can be found using the formula

ply) = /6 Py, 0)d8 = /9 p(y|0)p(6)ds )

e However, since this term does not contain @ it forms part of the normalising
constant of p(f|y)

e Sometimes we write Bayes Rule as:

p(Oly) o p(y|0)p(0) (3)
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The Prior

The term p(#) is called the prior distribution.

The word ‘prior’ comes from a Latin word meaning ‘before’

This represents our belief about 6 before seeing the data.

This is the most controversial part of the Bayesian Framework

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 12 / 92



Uniform Prior

e Suppose | know nothing about the proportion of students born in Beijing
before | collect data.

e In this case p(#) ~ U(0,1).
e Since the University is in Beijing, | could place less weight on p(6) close to 0.

e Since Zhong Cai is a good university it attracts students from all of China. |
could also place less weight on p(8) close to 1.

o However, | will use the assumption p(6) ~ U(0, 1).
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Computing the posterior

Let y; = 1 if the student is born in Beijing and y; = 0 otherwise:

p(0y) o< p(y|0)p(0) (4)
ﬁewu — )7 x 1 (5)
iyi Zn:(l—yi)
o= (1-0)= (6)
3 Yi n— 3 (yi)
gi=i (1—0) = ©)

Does this look familiar?
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Normalizing Constant and Kernel

What are the normalizing constantnormalizing constant and kernelkernel of the
Beta density?

Beta(x;a,b) = 2271 —z)P ! (8)
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Matching

e The kernel of the = ~ Beta(a, b) is

1) (9)

e The kernel of the posterior p(6|y)

En: Yi nfzﬂ:(yz)
6= (1-g) (10)

e Match x in Equation 9 with 6 in Equation 10. What about a and b7
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Posterior

n
e Match a — 1 in Equation 9 with }_ y; in Equation 10
i=1

e Match b — 1 in Equation 9 with n — Y y; in Equation 10
i=1
e The posterior is

0]y ~ Beta (Zyi—kl,n—ZyH—l) (11)

=1 i=1
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Inference

In classical inference there is Confidence Interval

In Bayesian inference there is a similar idea called Credible Interval
Find the quantiles at 2.5% and 97.5% to form a 95% credible interval
You can do this in R using gbeta.

How do we intepret a 95% credible interval (L,U)?

Itis just Pr(L <0 <U)=0.95
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Point Estimates

e Suppose we want a single estimate for . There are a few choices.

e Posterior Median 0™ : f:* p(0]y)do = 0.5
o Posterior Mode: argmax, p(0|y)
o Posterior Mean: Ejy,[6]

For the Beta distribution, you can look these up in a textbook.
e Can you work out the posterior median and posterior mode using R?
e Can you approximate the posterior mean using R?
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Testing

In the Classical framework there is the concept of a Hypothesis test.
For example Hy : 0 = 0.5 Hy : 0 < 0.5

In the Bayesian framework just look at posterior probabilities.

For example Pr(6 < 0.5)
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Classical v Bayesian

Many statisticians argue about whether the Classical or Bayesian framework
is correct.

o Regardless of which one you think is correct, you should understand both.

e In particular you should understand how to make interpretations in both
frameworks.

e The most important distinction is that parameters are NOT random variables
in the classical framework but parameters ARE random variables in the
Bayesian framework.
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Gaussian Data

e Suppose we would like to conduct Bayesian inference on the average height
of adult males in a country.

The observations are iid y; ~ N(u,0?).

e For now just consider inference on the average height treating the variance of
height 02 as known. We want p(uly, 02).

e What is a reasonable prior on u?
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Prior on u

The prior p(p) can also be normally distributed p ~ N(n, 72)

Different sets of values of 1 and 72 can be used.

. p(u) N(1.8,0.01)
p(p) ~ N(1.74,0.0025)

p(p) ~ N(1.78,0)

p(p

)~ N(n T) 2 5

These represent prior beliefs before we see any data.

Let the the prior on i be independent of o2. We say u and o2 are
independent a priori.
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What will be the posterior?

The prior is N (n,72%)

The likelihood is N (p,0?)

Maybe the posterior is also normal N(a,b)?
What does the kernel of the normal look like?

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Kernel of the Normal
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Obtain Posterior

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Obtain Posterior

X erpy —= > +

1|2 (1 = 2np+1n?
e LB ey
y7) = 2p - yi + np?
1| 50 ; (u? = 201 + 1)
AT o2 + T2
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Obtain Posterior

E Yi Z(yf) 2
_1 £_|__ 2_9of =L _|_i + | =L _1_77_
xerp 2 o2 2 ) H o2 2| H o2 T2
1 Zvoy,
2 i=
xerpy —5 (;4——2)# -2 2 +7_—2 iz
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Matching

Kernel of Normal

1 n 1 2 i:l' 17
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Matching

Match coefficient of p? and z2

n 1\'1 n 1
b=<—+—2> ,E:—2+—2 (12)

o2 T

Match coefficient of  and x

1 2 > Yi
a= (2 1 =1 4= n (13)
o2 12 o2 21" b o2 T2

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Posterior

The posterior is

-1 E Yi -1
2 n 1 i=1 n n 1
[L|y,0’ ~ N (; + ﬁ) 02 + 7__2 3 (; + 7_—2) (14)
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Coding Time

Write code to plot the density of the posterior (N (a,b) with a,b defined
previously). Use the values:

e 02 =0.01

e n=10

o >y =17.34
e =18

e 72 =0.25
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Tips for code

e Generate a grid of values using x=seq(1.55,1.85,0.001)

Write code to work out @ and b

Evaluate density using y=dnorm(x,a,sqrt(b))

Plot using plot(x,y,"l”)

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Different Values

Keep 02 = 0.01, n =10 and Y y; = 17.34. Change

e =16

e 72=10.25
Now Consider:

e =16

e 72 =0.001
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Plot

Effect of Prior
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Let 72 get big

e In the limiting case where 7 — 00, the prior distribution becomes improper
e In this limiting case p(u) o k where k is a constant. This is called a flat prior
e It can be verified that as 7 — oo, the posterior mean a — >_ y;/n and

b— o?/n.
o When p(p) oc k ply,0® ~ N(3yi/n, 0 /n)
e This leads similar inference as in the classical case (o2 known).
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Let n get big

Now consider:

e 02 =0.01

e n = 1000

o >y, =1734
e =16

e 72 =0.001

What do you think happens when n — oo?
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Plot

p(Hly)
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20
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Summary

e |f the prior variance is large:

e The posterior mean will be closer to the sample mean.
e The posterior variance is larger.

e If the prior variance is small:

e The posterior mean will be closer to the prior mean.
e The posterior variance is smaller.

e As the sample size gets larger, prior information is dominated by the
information in the likelihood.
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More terminology

Improper prior: A prior that does not integrate to 1 for example the flat prior
p(p) o< 1 where p € R

e Proper prior: A prior that does integrate to 1.

Noninformative Prior: A prior that has a small effect on on the posterior. It
may be proper or improper

Conjugate Prior: A prior that has the same distribution as the posterior
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Examples of Conjugacy

e Beta prior with Bernoulli likelihood give Beta posterior
o We say “Beta is conjugate to the Bernoulli".

Gaussian prior with Gaussian likelihood gives Gaussian posterior
e We say “Gaussian is conjugate to the Gaussian”.

e Gamma prior with Poisson likelihood gives Gamma posterior

e We say “Gamma is conjugate to the Poisson”.

Not all priors are conjugate.
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What about o2

In the previous section we ignored o2.

The posterior we looked at was p(u|0?,y)

In reality we also want to do inference on o2.

Also since we have uncertainty about o2 it doesn’t make sense to base
inference on p(u|o?,y)
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Inference is based on Marginal Posterior

e Inference for p will be based on

o) = [ plpso?u)do” (15)
e Similarly inference for o2 will be based on
ooy = [ oo ly)dn (16)
%
e In both cases
p(u, o°|y) o< plylu, o®)p(p, o%) (17)
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An interesting integral

Another way to write the integral for p(u|y) is as

/Zp(u,a2|y)d02 = /2;0(/402,y)p(azly)da2

g

Here is should be clear that we are ‘integrating’ out or ‘averaging’ out the
uncertainty in o2

The ‘weights’ for this average are p(c?|y)
e The same applies to fu p(p, o2|y)du
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How do we do the integration?

¢ In many cases integration can be done by recognising a distribution.

Let's consider the case where p(u, 02) o (02)~1

This is the same as a flat prior on p and a flat prior on log(c?).
We will find p(co?|y)
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Two steps

@ Recognize a distribution for

e To make this integrate to 1 we must have normalizing constant.
e Also we cannot remove any terms involving o>

@® Recognize a distribution in o2

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Find posterior

p(ylo?®, w)p(o®, p)dp

(ﬁ(QWUQ)_l/Qexp [—%D (0%)du

=1

o (2702)~"/2(52 /Hexp{ 202)2]@
o ] 52

p(o®ly) =

X

——
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The integral

Consider the integral
)2
/ I | erp [ 202 du (18)

With similar working as before we can show

/ﬂﬁexp {_M} d#=/ﬂeam {_Z(yiz)_QNZyi-i-nuz i

202
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202 2
r[ 5 [ S
- [ B e [ )

where g =Y y;/n
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2\ 27
—exp | 2W) ]
i 202

[l Sm] o

2y _ 21
= exp _Z(Z@T”y x (2m)/2 (02 /n) M2 x

L (202 ) e [—%] dy

(7)) — n@/2] x (2m)1/2(62) /212

= exp {— 957
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Back to the original aim

Now that  has been integrated out we can focus on the posterior of o>

ploly) o /Hexp[ “’2] "

Z(yig)g; ny ] % (2W)1/2(02)1/2n—1/2

> — nﬂg]

o (6272 Lexp [—

(-1 _4

exp [— 997

Can we recognise this?
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Inverse Gamma disribution

The kernel of the inverse Gamma disribution is given by

p(x) oz~ texp(—b/z) (19)
We have

 (n-1)

p(o?ly) o (o)~ 2

-1

i) - n?f}

exp [— 957

Match the parameters
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The posterior is

o2ly o IG (n ~1 YR - @2) -

2 7 2

All inference on the mean is based on this distribution.

2y _ 52
e A point estimate can be given by Eaz‘y[O'Q] = Z(Z#

Credible intervals for the mean can also be found.

We can do a similar process to show that the posterior p(u|y) follows a
Student t distribution.
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This is annoying

o Integrating out the parameters involves tedious mathematics.

e Even worse in some cases it does not even lead to a posterior that we can
recognize.

e For example, for the prior  ~ N(n,72), then p(c?|y) not Inverse Gamma. It
is unrecognizable

e What can we do?
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Markov chain Monte Carlo

o Although we cannot recognize the posterior, we do know the density.
e We may only know the kernel of the density and not the normalizing constant.

e |s it possible to at least draw a sample from the joint posterior?

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 55 /92



Inference by MCMC

e Consider the case where p(u, 0?) = p(u)p(c?) where
o p~ N(n,7?)
¢ p(0?) x (o)
e In this case the posterior of i is:

platy) o [t =] " e [ 22)

272

—1

e This cannot be recognized.

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing



Metropolis Algorithm

e Use the Metropolis algorithm to simulate a sample from p|y where the target
density is given by Equation 22.

e Use the values:

n =10

Sy = 17.34

Doyl =32

n=18

% =0.25

e Make a Monte Carlo approximation of E[u|y]
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Summary

Bayesian Inference treats all unknown quantities including parameters as
random variables

All inference is based on the posterior

e In some cases the posterior can be evaluated and recognized.

In other cases algorithms such as the Metropolis algorithm can be used.

Next week we will look at improvements on the basic Metropolis algorithm.
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Sampling the Posterior

e Recall the discussion: why do we need sampling algorithm?
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The Bayesian Linear Regression model

o Recall the linear regression model

Yi = Bo + Brx1 + ... + Bpp + €
where ¢; ~ N(0,02)
e We are intertested in the joint distribution of 3y, 31, ...8, and o
e You know how to get that by OLS under the Gaussian assumption:

p(B,0%) = p(Blo*)p(c?)
where 8|o? ~ N [(z'z)"1a'y, (2'z) "'0?] and 62 ~ x*(n — p).
e The Bayesian approach:
e We know by the Bayes’ rule

p(B,0%y,z) < p(y|B,o°, 2)p(B, %)
=p(ylB,o°, 2)p(Blo*)p(c?)

where p(y|8, 02, z) is the likelihood for the model and
p(B,0%) = p(Bla?)p(c?) is the prior information of the parameters and
p(B, 02|y, z) is called the posterior.

e The Bayesian way: Let’s just draw random samples from p(3, 0|y, z).
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Sampling the Posterior

©® Write down the likelihood function.
@ Specify the prior

e The distribution of 8 given o2 that you know a priori.

e The distribution of o2 (it has to be positive).
© Write down the posterior.

@ Use Gibbs to draw

Set a initial value for 3(®) and ¢2(0).
@ Draw a random vector 3V from p(,8<1>|02(0)
® Draw a random number o2
© Draw a random vector 32 from p(,@<2)|02(1),y,x)
© Draw a random number 62® from p(c?? |33y
© Draw a random vector 3% from ;u(ﬁ<3 |02(2)7y, )
@ Draw a random number ¢® from p(c2®|8®) ¢y, 2)

o ..
0 ..

@ Summarize gV 32 )
@ Summarize oM @) o)
@ Well done!

Y, )

from p(o*M |30y, x)
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A real R example
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Using MCMC for Bayesian Inference

e Today we look at specific examples of using MCMC to do Bayesian inference
o We will look at different ways of constructing MCMC for the same model

e In particular

e Gibbs Sampler
e Method of Composition
e Exact Inference
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Breaking down further

e For each step within Method of Composition and Gibbs there may be a few
options.
o Generate from a recognized distribution
o Generate using Metropolis Hastings with a Laplace approximation as proposal.
e Generate using Metropolis Hastings with a random walk proposal (i.e.
Metropolis).
e Any combination of these
e In theory all schemes converge, but some schemes may converge faster than
others.
e Also each scheme will have different Monte Carlo efficiency and
computational efficiency.
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Our Example

-1

The model is y; ~ N(u,0?) with prior p(u, 0?) o (%)

The posterior is

P, 0*ly) o (02)‘("/2)‘163310{—2;22(% —M)z} (23)

The algorithms will produce a sample from this posterior

(’u[1]’02[1]) : (u[21,02[2]) L (M[M],UZ[M]) ~ p(u, 02|y

The data is y=c(4.88, 2.71, 5.77, 4.26, 4.10, 2.60, 6.47, 3.76, 2.35, 2.91)

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 65 / 92



Four densities

There are four densities that we will use

Conditional posteriors:

e p(ulo*,y) (Normal)
e p(o?|u,y) (Inverse Gamma)

Marginal posteriors:

* p(uly) (Student t)
e p(a?|y) (Inverse Gamma)

These can be combined in different ways to obtain a sample from the joint
posterior p(u, o%|y)
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Steps

o Consider the following steps

e Obtain conditional posterior for each parameter.
e Recognize conditional posterior for each parameter.
o Integrate to get marginal posterior for each parameter.

e Sometimes Step 2 and 3 are impossible.

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 67 / 92



Four densities

In this example, we can recognize/ integrate to get all four densities

Conditional posteriors:

e p(ulo?,y) ~ N(g,0%/n)
o p(o®|p,y) ~ IG(n/2, > yi — np?/2)

Marginal posteriors:

o p(ply) ~ tn1(y,s°/n)
o p(c®ly) ~ IG((n—1)/2,% y? — ny?/2)

Here = 3" yi/n and s? = 3"(yi — 9)*/(n — 1)
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Gibbs Sampler

The first option is the Gibbs Sampler.
It is the most straightforward.

Inside a single loop:

@ Generate from p(o?|u, y)
® Generate from p(u|o?,y)

The order can be swapped around.
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Simulating

e In this example both distributions are recognisable. Therefore the Gibbs
sampler at step i can be

n#[i—l]Q

. .
© Generate 02/ ~ 1G(2, le)
@ Generate 1 ~ N(7, 02" /n)

e Always use the current values of the parameters.

e If you cannot recognize the distributions then use the Metropolis Hastings
algorithm at each step.

e This is called Metropolis Hastings within Gibbs.
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Coding time

Code up the Gibbs sampler on the previous slide.

Note there is no function for generating from an inverse gamma distribution
in R (although you can download packages to do this).

Instead use Metropolis Hastings to generate o within Gibbs.

e You can either use a random walk proposal or a Laplace proposal. It is up to
you.
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Dealing with parameter constraints

In this example o2 > 0 since it is a variance.

[ ]
e In Metropolis Hastings, it is possible to propose a value that g2nev] <0
e There are a few ways to handle this
@ Reject any o newl o
@ Reparameterise
© Constrain proposal
o We will look at the first two in detail
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Reject

By far the simplest option is to reject any value that does not satisfy
parameter constraints.

The rationale is that the target distribution is 0 if the constraints are not
satisfied.

Recall the Metropolis Hastings ratio

p(enew)q(enew _>00ld) (24)
’ p(gold)q(eold — gnew)

o =min (1

This is often (but not always) inefficient and leads to low acceptance rates.

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 73/ 92



Reparameterize

e Another option is to reparametize. For example instead of simulating o2 we
can simulate 7 = log (o?)

o If we have a sample (711, ... 7[M]) then the sample from p(c2|y) is

(02[1], cey aQ[M]> = (exp(r)[l], ceey exp(r)[M]) (25)

e How do we simulate 77
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Reparameterization

Let the target density be

The density of 7 = log(c?) is
p(e)J (27)

Where J =

2 . - .
do_| — €7 and is called the Jacobian of the transformation
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Jacobian

Remember densities need to be integrated to find probabilities. So one way to
think of a density is as

p(o?)do? (28)
Then do?
a T
implying
do? = e"dr (30)
The target density of 7 is
p(e")eTdr (31)
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Coding time

e Try to obtain a sample from p(7|y) using the Metropolis Hastings algorithm.
e Wherever you see o2 in the target density in your R Code replace with exp(7)
e Don't forget the Jacobian
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Inference

We have produced a sample from the joint posterior p(u, o|y).

We can do joint inference, for example to determine Pr(u < 5,02 > 1]y) we
only need to count the proportion of our sample where 1 < 5,02 > 1

We can also do inference on the marginal posterior by simply ignoring the
other parameter.

We can do this with no integration!
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Monte Carlo Estimate

How to find the posterior mean E(uly)?

Use the sample plY, ..., u™] ignoring o
We can find a Monte Carlo estimate

E(uly) ~ 1Zu g (32)

The 95% credible interval can be found by finding quantiles using the R
function quantile

Try it!
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Method of Composition

e An option that is often better than Gibbs is Method of Composition.
Option 1

e Simulate from p(o?|y)

e Simulate from p(u|o?,y)
Option 2

e Simulate from p(u|y)

e Simulate from p(02|ﬂvy)

Both will work. The decision usually comes down to whichever integration is
easier.
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Option 1

e To do Option 1, we need
p(o®ly) = / p(p, o°|y)dp (33)
I

and
p(ulo®,y) (34)
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Option 1

e The algorithm is

) I
© Simulate 2" G (nT—l7 2%2 ny >

® Simulate pl1 ~ N (gj, "2:])
o We are lucky since both distributions are recognisable.

e If they are not recognisable then Metropolis Hastings can be used in either
Step 1 or Step 2 or both.
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Option 2

e To do Option 2, we need

pluly) = /2 p(p, 0*|y)do” (35)

and
p(0®|n, y) (36)
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Option 2

e The algorithm would be

@ Simulate ,u[” ~tn_1 (3}, %)
) 2, l12
@ Simulate o'l ~ IG (g D’%)
e Again both distributions are recognisable.

e If they are not recognisable then Metropolis Hastings can be used in either
Step 1 or Step 2 or both.
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Coding time

e Obtain a joint sample using Option 1.

e Since there is no function to randomly generate from an inverse gamma
distribution use Metropolis Hastings to carry out Step 1.

e Make sure you deal with the constraint o2 > 0 correctly.
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Exact Inference

e For this example it is not actually necessary to do MCMC.

n—1 2 ny?
U2|y~|G( > ,2%2 y) (37)

o We already saw

o We already saw
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Point Estimates

To find the posterior mean E(o2|y) we just need to know the expected value
of an Inverse Gamma distribution.

The expected value of an IG(a,b) is b/(a — 1)

e In our example

2 _ 2
B(o%y) = =L (39)

Similarly E(ply) =3
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Credible Intervals

o Credible intervals can be found using the inverse CDF of the Inverse Gamma
and t distributions.

e For pu this can be found using the R function gt

e It is a little tricky since qt gives the quantiles for a standardised t.
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A word of warning

In the posterior p(i1,0%|y) 1 and o2 are dependent

However if we sample from both marginal posteriors p(u|y) and p(o?|y), the

sample values of ;! and o2 are independent.

If we simulate from p(u|y) and p(o?|y) this does NOT give a sample from
the joint posterior

For Gibbs and Method of Composition ! and o2 are dependent.
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Steps to constructing MCMC algorithms

@ Write down posterior
e Simply multiply likelihood and prior. Very Easy
® Do | recognize any distributions in the parameters?
e May require some algebra.
© Can | integrate out any parameters?

o Be careful with normalizing constants.
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Steps to constructing MCMC algorithms

e If you can only do Step 1 you can use Metropolis Hastings within Gibbs.

e If you can do Step 2 you can use Gibbs but may not need Metropolis
Hastings for all the parameters.

e If you can do Step 3, you may be able to do Method of Composition.
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Suggested Reading

e Gelman et all (2014). Bayesian data analysis (Vol. 2). Chapman &
Hall/CRC., Chapter 3

Monte Carlo Statistical Methods Book by Christian P Robert and George
Casella. (2004 edition)
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