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Distributed forecasting with ultra-long time series
ï Motivation

‚ Ultra-long time series are increasingly accumulated in many cases,
‚ hourly electricity demands
‚ daily maximum temperatures
‚ streaming data generated in real-time

‚ Forecasting ultra-long time series is challenging.
‚ Time series are distributed stored with distributed file systems.
‚ Training Bayesian models is time-consuming, and model updating is a demand for streaming

time series.
‚ Ultra-long time series require ultra-long forecasts.
‚ Assuming the DGP remains invariant (e.g. stationary assumptions), over ultra-long time

interval is unrealistic and requires efficient treatments.
‚ Few, if not no, Bayesian time models have even been applied to the industrial standard

distributed computing systems.
‚ Forecasters could not take advantage of probabilistic forecasting,
‚ making it difficult for inventory planning in business.
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Distributed forecasting with ultra-long time series
ï Electricity load data (Hong et al. 2019)

‚ The electricity load data set consists of 10 time series of hourly data, ranging from 1 March 2003 to 30
April 2017, spanning 124, 171 time points.

‚ The forecasting horizon is at least one month ahead to allow for earlier management plans.
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Distributed forecasting with ultra-long time series
ï The forecasting framework on a distributed system
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Least-square approximation for a distributed system
‚ Let Lpθ; Zq be a plausible twice-differentiable loss function. Define the global loss

function as Lpθq “ N´1 řN
i“1 Lpθ; Ziq, whose global minimizer is rθ “ arg min Lpθq and

the true value is θ0.
‚ Decomposing and approximating the global loss function using Taylor’s expansion

techniques as follows:

Lpθq « N´1
K
ÿ

k“1

ÿ

iPSk

pθ ´ rθkqJ :Lprθk; Ziqpθ ´ rθkq ` C

‚ The quadratic form should be a good local approximation of the global loss function
(Wang & Leng 2007, JASA). This leads to the following least squares objective function
for a distributed model (DLSA) (Zhu, Li & Wang 2021, JCGS),

rLpθq
def
“

ÿ

k

pθ ´ rθkqJαk
rΣ´1

k pθ ´ rθkq
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The distributed Bayesian VARs I

‚ We consider a general VAR model written as

Y “ Y´1A1 ` Y´2A2 ` ... ` Y´pAp ` ZC ` U “ XΓ ` U

where Y is a T ˆ n matrix, X “ pY´1, Y´2, ..., Y´p, Zqis a T ˆ m matrix to represent the lagged terms
of Y and other explanatory variables, Γ “

`

A1
1, A1

2, ..., A1
p, C 1

˘1 is the m ˆ n coefficients matrix, and
U “ pu1, u2, ..., uT q

1 while ut „ Np0, Ψq is the normally distributed errors.

‚ To keep things simple, we take an uniform prior distribution for Γ and a Jeffreys’ prior for
Ψ,

ppΓ, Ψq9|Ψ|´pn`1q{2. (1)

‚ Then, we know that Γ follows a multivariate normal distribution conditional on Ψ, and Ψ
follows an inverse Wishart distribution.
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The distributed Bayesian VARs II
‚ The marginal posterior for Γ is a matricvariate t-distribution

Γ|YT „ MV Tmnprγ, X 1X, S, T ´ mq

for γ “ vec Γ and rγ “ vec rΓ “ vec
`

pX 1Xq´1X 1Y
˘

.

‚ Thus,
EpΓq “ rγ, V pvec Γq “

1
T ´ m ´ n ´ 1S b pX 1Xq´1.

‚ In this way, we could directly work out the posterior expectation and covariance matrix of
coefficients for subdatas, and then the master could calculate global estimator rΓ using
the DLSA (Zhu, Li & Wang 2021, JCGS).

vec rΓ “

«

ÿ

k

αkV ´1
k pvec Γq

ff´1 «

ÿ

k

αkV ´1
k pvec Γq rγk

ff
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The distributed Bayesian VARs
ï Distributed Bayesian updating with DLSA

‚ Model updating for streaming data is simple with Bayesian scheme
— Yesterday’s posterior is today’s prior.

‚ With the DLSA method, if rV ´1
K represents

ř

k αK
rΣ´1

K and the initial value is set as
rV ´1

1 “ α1 rΣ´1
1 and rθ1 “ rθ1, then we can get

rV ´1
K`1 “ rV ´1

K ` αk`1 rΣ´1
k`1

rθK`1 “ rVK`1

´

rV ´1
K

rθK ` αk`1 rΣ´1
k`1

rθk`1

¯

‚ Therefore, we can constantly update the expected estimate rθK`1 and rV ´1
K`1 based on the

initial value and the parameters αk`1 rΣ´1
k`1 and rθk`1 calculated based on the new data.
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Application to the electricity demand data

Variable name Description

Date date in MM/DD/YYYY format
Hour hour of the observation, in hour ending and 24-hour convention
DA_DEMD day-ahead demand consists of fixed and price sensitive demand bids

plus decrement bids & increment offers
DEMAND non-PTF demand = [non-dispatchable + unmetered + station service]

as determined by metering
DA_LMP day-ahead locational marginal price
DA_EC day-ahead energy component
RT_LMP real-time locational marginal price
RT_EC real-time energy component
DryBulb dry bulb temperature in °F
DewPnt dew point temperature in °F
SYSLoad System load = [generation - pumping load + net interchange]

as determined by metering
RegCP Regulation Clearing Price
* Demand & load are in MWh. All prices are in $/MWh.
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Distributed forecasting with ultra-long time series
ï Electricity load data
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Distributed forecasting with ultra-long time series
ï Need for speed!

Table 1. Performance comparison of DARIMA and ARIMA on different settings of the maximum values of model

orders in terms of MASE, MSIS as well as execution time over 30 executors/cores. The argument max.orders in the

first column, is composed of three components: the maximum value of p (equals to that of q), the maximum value

of P (equals to that of Q) and the maximum value of p+q+P +Q. For each measure, the lowest value of the scoring

rule under a specific order setting is presented in bold.

Max orders Method MASE MSIS Execution time

(mins)

(5, 2, 5) ARIMA 1.430 19.733 4.596

DARIMA 1.297 15.078 1.219
(5, 2, 7) ARIMA 1.410 18.695 14.189

DARIMA 1.297 15.078 1.211
(6, 2, 7) ARIMA 1.410 18.695 15.081

DARIMA 1.298 15.108 1.326
(6, 3, 7) ARIMA 1.413 15.444 21.072

DARIMA 1.324 12.590 1.709
(6, 3, 10) ARIMA 1.413 15.654 76.272

DARIMA 1.324 12.590 1.769
(7, 3, 10) ARIMA 1.413 15.654 83.077

DARIMA 1.327 12.561 1.829
(7, 4, 10) ARIMA 1.409 13.667 111.292

DARIMA 1.338 12.079 2.267
(8, 4, 10) ARIMA 1.409 13.667 117.875

DARIMA 1.335 12.076 2.224

1
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Distributed forecasting with ultra-long time series
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Applications
ï Forecasting Results of GEFCom2017 Data with VARs

Distributed FALSE TRUE

Nodes 1 5 10 50

h=24
RMSE 0.129 0.124 0.123 0.125
MASE 0.419 0.406 0.400 0.413
LPS 32.223 32.910 33.152 32.372

h=48
RMSE 0.119 0.116 0.116 0.118
MASE 0.371 0.366 0.363 0.374
LPS 61.367 62.127 62.284 60.912

h=168
RMSE 0.127 0.125 0.125 0.125
MASE 0.402 0.398 0.393 0.400
LPS 187.877 189.688 190.311 189.660

h=720
RMSE 0.144 0.144 0.144 0.143
MASE 0.451 0.453 0.449 0.451
LPS 580.820 582.794 583.121 587.239
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Discussions

‚ Distributed forecasting not only speeds up the computation but also improves forecasting
performance (Wang et al. 2020, arXiv).

‚ Distributed systems like Apache Spark are the de facto standard in the data science
industry, but it is costly to run time-consuming programs.

‚ Scalable Bayesian forecasting models empower rapid business planning.
‚ Theoretical details are available in

‚ DLSA — Zhu, Li & Wang (2021, JCGS),
‚ DQR — Pan, Ren, Guo, Li, Guodong & Wang (2021, JBES),
‚ DVAR — Ma, Li, Karlsson & Kang (2021, soon on arXiv),
‚ DARIMA — Wang, Kang, Hyndman & Li (2020, arXiv).

‚ Try our software https://github.com/feng-li/dstats/ implemented for the Spark
distributed computing platform.
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Thank you!

https://kllab.org
feng.li@cufe.edu.cn
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