
Vector Semantics

Why vector models of meaning?
computing the similarity between words

“fast” is similar to “rapid”

“tall” is similar to “height”

Question answering:

Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”

2

Word similarity for plagiarism detection

Distributional models of meaning
= vector-space models of meaning
= vector semantics

Intuitions: Zellig Harris (1954):

• “oculist and eye-doctor … occur in almost the same
environments”

• “If A and B have almost identical environments we say that
they are synonyms.”

Firth (1957):

• “You shall know a word by the company it keeps!”

 4

Intuition of distributional word similarity

• Nida example:
A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means

• an alcoholic beverage like beer

• Intuition for algorithm:
• Two words are similar if they have similar word contexts.

Four kinds of vector models

Sparse vector representations

1. Mutual-information weighted word co-occurrence matrices

Dense vector representations:

2. Singular value decomposition (and Latent Semantic
Analysis)

3. Neural-network-inspired models (skip-grams, CBOW)

4. Brown clusters

6

Shared intuition

• Model the meaning of a word by “embedding” in a vector space.

• The meaning of a word is a vector of numbers
• Vector models are also called “embeddings”.

• Contrast: word meaning is represented in many computational
linguistic applications by a vocabulary index (“word number 545”)

• Old philosophy joke:
Q: What’s the meaning of life?

A: LIFE’

7

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0

Term-document matrix

• Each cell: count of term t in a document d: tft,d:
• Each document is a count vector in ℕv: a column below

8

 Term-document matrix

• Two documents are similar if their vectors are similar

9

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0

The words in a term-document matrix

• Each word is a count vector in ℕD: a row below

10

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0

The words in a term-document matrix

• Two words are similar if their vectors are similar

11

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0

Term-context matrix for word similarity

• Two words are similar in meaning if their context
vectors are similar

12

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

The word-word or word-context matrix

• Instead of entire documents, use smaller contexts

• Paragraph

• Window of ± 4 words

• A word is now defined by a vector over counts of
context words

• Instead of each vector being of length D

• Each vector is now of length |V|

• The word-word matrix is |V|x|V| 13

Word-Word matrix
Sample contexts ± 7 words

14

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

… …

Word-word matrix

• We showed only 4x6, but the real matrix is 50,000 x 50,000
• So it’s very sparse

• Most values are 0.

• That’s OK, since there are lots of efficient algorithms for sparse matrices.

• The size of windows depends on your goals
• The shorter the windows , the more syntactic the representation

± 1-3 very syntacticy

• The longer the windows, the more semantic the representation

± 4-10 more semanticy
15

Vector Semantics

Positive Pointwise Mutual
Information (PPMI)

Problem with raw counts

• Raw word frequency is not a great measure of
association between words
• It’s very skewed

• “the” and “of” are very frequent, but maybe not the most
discriminative

• We’d rather have a measure that asks whether a context word is
particularly informative about the target word.

• Positive Pointwise Mutual Information (PPMI)

17

Pointwise Mutual Information

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

PMI between two words: (Church & Hanks 1989)

 Do words x and y co-occur more than if they were independent?

PMI 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 = log2

𝑃(𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2)

𝑃 𝑤𝑜𝑟𝑑1 𝑃(𝑤𝑜𝑟𝑑2)

PMI(X,Y) = log2

P(x,y)
P(x)P(y)

Positive Pointwise Mutual Information

• PMI ranges from −∞ to + ∞

• But the negative values are problematic

• Things are co-occurring less than we expect by chance

• Unreliable without enormous corpora
• Imagine w1 and w2 whose probability is each 10-6

• Hard to be sure p(w1,w2) is significantly different than 10-12

• Plus it’s not clear people are good at “unrelatedness”

• So we just replace negative PMI values by 0

• Positive PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 = max log2

𝑃(𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2)

𝑃 𝑤𝑜𝑟𝑑1 𝑃(𝑤𝑜𝑟𝑑2)
, 0

Computing PPMI on a term-context matrix

• Matrix F with W rows (words) and C columns (contexts)

• fij is # of times wi occurs in context cj

20

pij =
fij

fij
j=1

C

å
i=1

W

å
pi* =

fij
j=1

C

å

fij
j=1

C

å
i=1

W

å

p* j =

fij
i=1

W

å

fij
j=1

C

å
i=1

W

å

pmiij = log2

pij

pi*p* j

ppmiij =
pmiij if pmiij > 0

0 otherwise

ì
í
ï

îï

p(w=information,c=data) =

p(w=information) =

p(c=data) =

21

p(w,context) p(w)

computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .32 6/19

11/19 = .58

7/19 = .37

pij =
fij

fij
j=1

C

å
i=1

W

å

p(wi) =

fij
j=1

C

å

N
p(c j) =

fij
i=1

W

å

N

22

pmiij = log2

pij

pi*p* j

• pmi(information,data) = log2 (

p(w,context) p(w)

computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)

computer data pinch result sugar

apricot - - 2.25 - 2.25

pineapple - - 2.25 - 2.25

digital 1.66 0.00 - 0.00 -

information 0.00 0.57 - 0.47 -

.32 / (.37*.58)) = .58
(.57 using full precision)

Weighting PMI

• PMI is biased toward infrequent events

• Very rare words have very high PMI values

• Two solutions:

• Give rare words slightly higher probabilities

• Use add-one smoothing (which has a similar effect)

23

Weighting PMI: Giving rare context words
slightly higher probability

• Raise the context probabilities to 𝛼 = 0.75:

• This helps because 𝑃𝛼 𝑐 > 𝑃 𝑐 for rare c

• Consider two events, P(a) = .99 and P(b)=.01

• 𝑃𝛼 𝑎 =
.99.75

.99.75+.01.75 = .97 𝑃𝛼 𝑏 =
.01.75

.01.75+.01.75 = .03

24

Use Laplace (add-1) smoothing

25

26

Add-2	Smoothed	Count(w,context)

computer data pinch result sugar

apricot 2 2 3 2 3

pineapple 2 2 3 2 3

digital 4 3 2 3 2

information 3 8 2 6 2

p(w,context)	[add-2] p(w)

computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20

pineapple 0.03 0.03 0.05 0.03 0.05 0.20

digital 0.07 0.05 0.03 0.05 0.03 0.24

information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17

PPMI versus add-2 smoothed PPMI

27

PPMI(w,context)	[add-2]

computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56

pineapple 0.00 0.00 0.56 0.00 0.56

digital 0.62 0.00 0.00 0.00 0.00

information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)

computer data pinch result sugar

apricot - - 2.25 - 2.25

pineapple - - 2.25 - 2.25

digital 1.66 0.00 - 0.00 -

information 0.00 0.57 - 0.47 -

Vector Semantics

Measuring similarity: the
cosine

Measuring similarity

• Given 2 target words v and w

• We’ll need a way to measure their similarity.

• Most measure of vectors similarity are based on the:

• Dot product or inner product from linear algebra

• High when two vectors have large values in same dimensions.

• Low (in fact 0) for orthogonal vectors with zeros in complementary
distribution

29

Problem with dot product

• Dot product is longer if the vector is longer. Vector length:

• Vectors are longer if they have higher values in each dimension

• That means more frequent words will have higher dot products

• That’s bad: we don’t want a similarity metric to be sensitive to
word frequency 30

Solution: cosine

• Just divide the dot product by the length of the two vectors!

• This turns out to be the cosine of the angle between them!

31

Cosine for computing similarity

cos(v,w) =
v ·w

v w
=
v

v
·
w

w
=

viwii=1

N

å

vi
2

i=1

N

å wi
2

i=1

N

å

Dot product Unit vectors

vi is the PPMI value for word v in context i
wi is the PPMI value for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

Cosine as a similarity metric

• -1: vectors point in opposite directions

• +1: vectors point in same directions

• 0: vectors are orthogonal

• Raw frequency or PPMI are non-
negative, so cosine range 0-1

33

large data computer

apricot 2 0 0

digital 0 1 2

information 1 6 1

34

Which pair of words is more similar?

cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos(v,w) =
v ·w

v w
=
v

v
·
w

w
=

viwii=1

N

å

vi
2

i=1

N

å wi
2

i=1

N

å

1+ 0+0

1+36+1

1+36+1

0+1+ 4

0+1+ 4

 0 + 6 + 2

 0 + 0 + 0

=
8

38 5
= .58

= 0

2 + 0 + 0

2 + 0 + 0
=

2

2 38
= .23

Visualizing vectors and angles

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

o
n

 1
:

‘l
a

rg
e’

Dimension 2: ‘data’35

large data

apricot 2 0

digital 0 1

information 1 6

Clustering vectors to
visualize similarity in
co-occurrence
matrices

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

HEAD

HAND
FACE

DOG

AMERICA

CAT

EYE

EUROPE

FOOT

CHINA
FRANCE

CHICAGO

ARM

FINGER

NOSE

LEG

RUSSIA

MOUSE

AFRICA

ATLANTA

EAR

SHOULDER

ASIA

COW

BULL

PUPPY
LION

HAWAII

MONTREAL

TOKYO

TOE

MOSCOW

TOOTH

NASHVILLE

BRAZIL

WRIST

KITTEN

ANKLE

TURTLE

OYSTER

Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG

HAND
FOOT

HEAD
NOSE
FINGER

TOE
FACE

EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA

RUSSIA
AFRICA
ASIA
EUROPE

AMERICA
BRAZIL

MOSCOW
FRANCE

HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

36 Rohde et al. (2006)

Other possible similarity measures

Vector Semantics

Measuring similarity: the
cosine

Using syntax to define a word’s context

• Zellig Harris (1968)

“The meaning of entities, and the meaning of grammatical
relations among them, is related to the restriction of
combinations of these entities relative to other entities”

• Two words are similar if they have similar syntactic contexts

Duty and responsibility have similar syntactic distribution:

 Modified by
adjectives

additional, administrative, assumed, collective,
congressional, constitutional …

Objects of verbs assert, assign, assume, attend to, avoid, become, breach..

Co-occurrence vectors based on syntactic dependencies

• Each dimension: a context word in one of R grammatical relations
• Subject-of- “absorb”

• Instead of a vector of |V| features, a vector of R|V|

• Example: counts for the word cell :

Dekang Lin, 1998 “Automatic Retrieval and Clustering of Similar Words”

Syntactic dependencies for dimensions

• Alternative (Padó and Lapata 2007):
• Instead of having a |V| x R|V| matrix

• Have a |V| x |V| matrix

• But the co-occurrence counts aren’t just counts of words in a window

• But counts of words that occur in one of R dependencies (subject, object,
etc).

• So M(“cell”,”absorb”) = count(subj(cell,absorb)) + count(obj(cell,absorb))
+ count(pobj(cell,absorb)), etc.

41

PMI applied to dependency relations

• “Drink it” more common than “drink wine”

• But “wine” is a better “drinkable” thing than “it”

Object of “drink” Count PMI

it 3 1.3

anything 3 5.2

wine 2 9.3

tea 2 11.8

liquid 2 10.5

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of “drink” Count PMI

tea 2 11.8

liquid 2 10.5

wine 2 9.3

anything 3 5.2

it 3 1.3

Alternative to PPMI for measuring
association

• tf-idf (that’s a hyphen not a minus sign)

• The combination of two factors
• Term frequency (Luhn 1957): frequency of the word (can be logged)

• Inverse document frequency (IDF) (Sparck Jones 1972)

• N is the total number of documents

• dfi = “document frequency of word i”

• = # of documents with word I

• wij = word i in document j

 wij=tfij idfi
 43

idf
i

= log
N

df
i

æ

è

ç
ç

ö

ø

÷
÷

tf-idf not generally used for word-word
similarity

• But is by far the most common weighting when we are
considering the relationship of words to documents

44

Vector Semantics

Evaluating similarity

Evaluating similarity

• Extrinsic (task-based, end-to-end) Evaluation:
• Question Answering

• Spell Checking

• Essay grading

• Intrinsic Evaluation:
• Correlation between algorithm and human word similarity ratings

• Wordsim353: 353 noun pairs rated 0-10. sim(plane,car)=5.77

• Taking TOEFL multiple-choice vocabulary tests
• Levied is closest in meaning to:

 imposed, believed, requested, correlated

Summary

• Distributional (vector) models of meaning

• Sparse (PPMI-weighted word-word co-occurrence matrices)

• Dense:

• Word-word SVD 50-2000 dimensions

• Skip-grams and CBOW

• Brown clusters 5-20 binary dimensions.

47

Vector Semantics

Dense Vectors

Sparse versus dense vectors

• PPMI vectors are

• long (length |V|= 20,000 to 50,000)

• sparse (most elements are zero)

• Alternative: learn vectors which are

• short (length 200-1000)

• dense (most elements are non-zero)

49

Sparse versus dense vectors

• Why dense vectors?

• Short vectors may be easier to use as features in machine
learning (less weights to tune)

• Dense vectors may generalize better than storing explicit counts

• They may do better at capturing synonymy:

• car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between a
word with car as a neighbor and a word with automobile as a
neighbor

50

Three methods for getting short dense
vectors

• Singular Value Decomposition (SVD)

• A special case of this is called LSA – Latent Semantic Analysis

• “Neural Language Model”-inspired predictive models

• skip-grams and CBOW

• Brown clustering

51

Vector Semantics

Dense Vectors via SVD

Intuition

• Approximate an N-dimensional dataset using fewer dimensions

• By first rotating the axes into a new space

• In which the highest order dimension captures the most
variance in the original dataset

• And the next dimension captures the next most variance, etc.

• Many such (related) methods:
• PCA – principle components analysis

• Factor Analysis

• SVD

53

54

Dimensionality reduction

Singular Value Decomposition

55

Any rectangular w x c matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a
dimension in a new latent space, such that

• M column vectors are orthogonal to each other

• Columns are ordered by the amount of variance in the dataset each new
dimension accounts for

S: diagonal m x m matrix of singular values expressing the
importance of each dimension.

C: columns corresponding to original but m rows corresponding to
singular values

Singular Value Decomposition

56 Landuaer and Dumais 1997

SVD applied to term-document matrix:
Latent Semantic Analysis

• If instead of keeping all m dimensions, we just keep the top k
singular values. Let’s say 300.

• The result is a least-squares approximation to the original X

• But instead of multiplying,
we’ll just make use of W.

• Each row of W:
• A k-dimensional vector

• Representing word W

 57 k
/

/
k

/
k

/
k

Deerwester et al (1988)

LSA more details

• 300 dimensions are commonly used

• The cells are commonly weighted by a product of two weights
• Local weight: Log term frequency

• Global weight: either idf or an entropy measure

58

Let’s return to PPMI word-word matrices

• Can we apply to SVD to them?

59

SVD applied to term-term matrix

60 (I’m simplifying here by assuming the matrix has rank |V|)

Truncated SVD on term-term matrix

61

Truncated SVD produces embeddings

62

• Each row of W matrix is a k-dimensional
representation of each word w

• K might range from 50 to 1000

• Generally we keep the top k dimensions,
but some experiments suggest that
getting rid of the top 1 dimension or even
the top 50 dimensions is helpful (Lapesa
and Evert 2014).

Embeddings versus sparse vectors

• Dense SVD embeddings sometimes work better than
sparse PPMI matrices at tasks like word similarity
• Denoising: low-order dimensions may represent unimportant

information

• Truncation may help the models generalize better to unseen data.

• Having a smaller number of dimensions may make it easier for
classifiers to properly weight the dimensions for the task.

• Dense models may do better at capturing higher order co-
occurrence.

63

Vector Semantics

Embeddings inspired by
neural language models:

skip-grams and CBOW

Prediction-based models:
An alternative way to get dense vectors

• Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)

• Learn embeddings as part of the process of word prediction.

• Train a neural network to predict neighboring words
• Inspired by neural net language models.

• In so doing, learn dense embeddings for the words in the training corpus.

• Advantages:
• Fast, easy to train (much faster than SVD)

• Available online in the word2vec package

• Including sets of pretrained embeddings!

65

Skip-grams

• Predict each neighboring word

• in a context window of 2C words

• from the current word.

• So for C=2, we are given word wt and predicting these
4 words:

66

Skip-grams learn 2 embeddings
for each w

input embedding v, in the input matrix W

• Column i of the input matrix W is the 1×d
embedding vi for word i in the vocabulary.

output embedding v′, in output matrix W’

• Row i of the output matrix W′ is a d × 1
vector embedding v′i for word i in the
vocabulary.

 67

Setup

• Walking through corpus pointing at word w(t), whose index in

the vocabulary is j, so we’ll call it wj (1 < j < |V |).

• Let’s predict w(t+1) , whose index in the vocabulary is k (1 < k <
|V |). Hence our task is to compute P(wk|wj).

68

Intuition: similarity as dot-product
between a target vector and context vector

69

Similarity is computed from dot product

• Remember: two vectors are similar if they have a high
dot product

• Cosine is just a normalized dot product

• So:

• Similarity(j,k) ∝ ck ∙ vj

• We’ll need to normalize to get a probability

70

Turning dot products into probabilities

• Similarity(j,k) = ck ∙ vj

• We use softmax to turn into probabilities

71

Embeddings from W and W’

• Since we have two embeddings, vj and cj for each word wj
• We can either:

• Just use vj

• Sum them

• Concatenate them to make a double-length embedding

72

Learning

• Start with some initial embeddings (e.g., random)

• iteratively make the embeddings for a word
• more like the embeddings of its neighbors

• less like the embeddings of other words.

73

Visualizing W and C as a network for doing
error backprop

74

One-hot vectors

• A vector of length |V|

• 1 for the target word and 0 for other words

• So if “popsicle” is vocabulary word 5

• The one-hot vector is

• [0,0,0,0,1,0,0,0,0…….0]

75

76

Skip-gram
h = vj

o = Ch

ok = ckh

ok = ck∙vj

Problem with the softamx

• The denominator: have to compute over every word in vocab

• Instead: just sample a few of those negative words

77

Goal in learning

• Make the word like the context words

• We want this to be high:

• And not like k randomly selected “noise words”

• We want this to be low:
78

Skipgram with negative sampling:
Loss function

79

Relation between skipgrams and PMI!

• If we multiply WW’T

• We get a |V|x|V| matrix M , each entry mij corresponding to
some association between input word i and output word j

• Levy and Goldberg (2014b) show that skip-gram reaches its
optimum just when this matrix is a shifted version of PMI:

 WW′T =MPMI −log k

• So skip-gram is implicitly factoring a shifted version of the PMI
matrix into the two embedding matrices.

80

Properties of embeddings

81

• Nearest words to some embeddings (Mikolov et al. 20131)

Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

82

Vector Semantics

Brown clustering

Brown clustering

• An agglomerative clustering algorithm that clusters words based
on which words precede or follow them

• These word clusters can be turned into a kind of vector

• We’ll give a very brief sketch here.

84

Brown clustering algorithm

• Each word is initially assigned to its own cluster.

• We now consider consider merging each pair of clusters. Highest
quality merge is chosen.
• Quality = merges two words that have similar probabilities of preceding

and following words

• (More technically quality = smallest decrease in the likelihood of the
corpus according to a class-based language model)

• Clustering proceeds until all words are in one big cluster.

85

Brown Clusters as vectors

• By tracing the order in which clusters are merged, the model
builds a binary tree from bottom to top.

• Each word represented by binary string = path from root to leaf

• Each intermediate node is a cluster

• Chairman is 0010, “months” = 01, and verbs = 1

86

Brow n A lgorithm

• W ords m erged according to contextual
sim ilarity

• C lusters are equivalent to bit-string prefixes

• Prefix length determ ines the granularity of
the clustering

011

president

walk

run sprint
chairman

CEO November October

0 1

00 01

00110010

001

10 11

000 100 101010

Brown cluster examples

87

Class-based language model

• Suppose each word was in some class ci:

88

19.7 • B R O W N C LU ST ER IN G 19

Figure 19.15 Vector offsets show ing relationalproperties of the vector space,show n by
projecting vectorsonto tw o dim ensionsusing PCA .In theleftpanel,’king’-’m an’+’w om an’
isclose to ’queen’.In the right,w e see the w ay offsetsseem to capture gram m aticalnum ber.
(M ikolov etal.,2013b).

19.7 Brow n Clustering

Brow n clustering (Brow n etal.,1992)isan agglom erative clustering algorithm forBrow n
clustering

deriving vectorrepresentations ofw ordsby clustering w ordsbased on theirassocia-
tionsw ith the preceding orfollow ing w ords.

The algorithm m akes use of the class-based language m odel (Brow n et al.,class-based
language m odel

1992),am odelin w hich each w ord w 2 V belongsto aclassc2 C w ith aprobability
P(w|c). Class based LM s assigns a probability to a pairofw ords w i− 1 and w i by
m odeling the transition betw een classes ratherthan betw een w ords:

P(w i|w i− 1)= P(ci|ci− 1)P(w i|ci) (19.32)

The class-based LM can be used to assign aprobability to an entire corpusgiven
a particularly clustering C asfollow s:

P(corpus|C)=
nY

i− 1

P(ci|ci− 1)P(w i|ci) (19.33)

Class-based language m odels are generally notused as a language m odelfor ap-
plications like m achine translation orspeech recognition because they don’tw ork
as w ellas standard n-gram s orneurallanguage m odels. Butthey are an im portant
com ponentin Brow n clustering.

Brow n clustering is a hierarchicalclustering algorithm . Let’s consider a naive
(albeitinefficient)version ofthe algorithm :

1. Each w ord isinitially assigned to itsow n cluster.

2. W e now consider consider m erging each pair of clusters. The pair w hose
m ergerresultsin thesm allestdecrease in thelikelihood ofthe corpus(accord-
ing to the class-based language m odel)ism erged.

3. Clustering proceedsuntilallw ordsare in one big cluster.

Tw o w ordsare thusm ostlikely to be clustered ifthey have sim ilarprobabilities
forpreceding and follow ing w ords,leading to m ore coherentclusters.The resultis
thatw ordsw illbe m erged ifthey are contextually sim ilar.

By tracing the orderin w hich clustersare m erged,the m odelbuildsa binary tree
from bottom to top,in w hich the leaves are the w ords in the vocabulary,and each
interm ediate node in the tree represents the cluster thatis form ed by m erging its
children.Fig.19.16 show sa schem atic view ofa partofa tree.

19.7 • B R O W N C L U ST E R IN G 19

Figure 19.15 Vector offsets show ing relational properties of the vector space,show n by
projecting vectorsonto tw o dim ensionsusing PC A .In theleftpanel,’king’-’m an’+ ’w om an’
isclose to ’queen’.In the right,w e see the w ay offsetsseem to capture gram m aticalnum ber.
(M ikolov etal.,2013b).

19.7 B row n C lustering

B row n clustering (B row n etal.,1992)isan agglom erative clustering algorithm forB row n
clustering

deriving vectorrepresentations ofw ordsby clustering w ordsbased on theirassocia-
tions w ith the preceding orfollow ing w ords.

The algorithm m akes use of the class-based language m odel (B row n et al.,class-based
language m odel

1992),a m odelin w hich each w ord w 2 V belongsto a classc2 C w ith a probability
P(w |c). C lass based LM s assigns a probability to a pair of w ords w i− 1 and w i by
m odeling the transition betw een classes ratherthan betw een w ords:

P(w i|w i− 1)= P(ci|ci− 1)P(w i|ci) (19.32)

The class-based LM can be used to assign a probability to an entire corpusgiven
a particularly clustering C asfollow s:

P(corpus|C)=
nY

i− 1

P(ci|ci− 1)P(w i|ci) (19.33)

C lass-based language m odels are generally notused as a language m odelfor ap-
plications like m achine translation or speech recognition because they don’tw ork
as w ellas standard n-gram s orneurallanguage m odels. B utthey are an im portant
com ponentin B row n clustering.

B row n clustering is a hierarchical clustering algorithm . Let’s consider a naive
(albeitinefficient)version ofthe algorithm :

1. Each w ord isinitially assigned to its ow n cluster.

2. W e now consider consider m erging each pair of clusters. The pair w hose
m ergerresultsin the sm allestdecrease in the likelihood ofthe corpus(accord-
ing to the class-based language m odel)ism erged.

3. C lustering proceeds untilallw ordsare in one big cluster.

Tw o w ordsare thus m ostlikely to be clustered ifthey have sim ilarprobabilities
forpreceding and follow ing w ords,leading to m ore coherentclusters. The resultis
thatw ordsw illbe m erged ifthey are contextually sim ilar.

B y tracing the orderin w hich clusters are m erged,the m odelbuildsa binary tree
from bottom to top,in w hich the leaves are the w ords in the vocabulary,and each
interm ediate node in the tree represents the cluster that is form ed by m erging its
children.Fig.19.16 show sa schem atic view ofa partofa tree.

