
Vector Semantics 



Why vector models of meaning? 
computing the similarity between words 

“fast” is similar to “rapid” 

“tall” is similar to “height” 

 

Question answering: 

Q: “How tall is Mt. Everest?” 
Candidate A: “The official height of Mount Everest is 29029 feet” 
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Word similarity for plagiarism detection 

 



Distributional models of meaning 
= vector-space models of meaning  
= vector semantics 

Intuitions:  Zellig Harris (1954): 

• “oculist and eye-doctor … occur in almost the same 
environments” 

• “If A and B have almost identical environments we say that 
they are synonyms.” 

 

Firth (1957):  

• “You shall know a word by the company it keeps!” 
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Intuition of distributional word similarity 

• Nida example: 
A bottle of tesgüino is on the table 

Everybody likes tesgüino 

Tesgüino makes you drunk 

We make tesgüino out of corn. 

• From context words humans can guess tesgüino means 

• an alcoholic beverage like beer 

• Intuition for algorithm:  
• Two words are similar if they have similar word contexts. 



Four kinds of vector models 

Sparse vector representations 

1. Mutual-information weighted word co-occurrence matrices 

Dense vector representations: 

2. Singular value decomposition (and Latent Semantic 
Analysis) 

3. Neural-network-inspired models (skip-grams, CBOW) 

4. Brown clusters 
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Shared intuition 

• Model the meaning of a word by “embedding” in a vector space. 

• The meaning of a word is a vector of numbers 
• Vector models are also called “embeddings”. 

• Contrast: word meaning is represented in many computational 
linguistic applications by a vocabulary index (“word number 545”) 

• Old philosophy joke:  
Q: What’s the meaning of life? 

A: LIFE’ 
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As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0

Term-document matrix 

• Each cell: count of term t in a document d:  tft,d:  
• Each document is a count vector in ℕv: a column below  
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 Term-document matrix 

• Two documents are similar if their vectors are similar 
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As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0



The words in a term-document matrix 

• Each word is a count vector in ℕD: a row below  
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As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0



The words in a term-document matrix 

• Two words are similar if their vectors are similar 
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As	You	Like	It Twelfth	Night Julius	Caesar Henry	V

battle 1 1 8 15

soldier 2 2 12 36

fool 37 58 1 5

clown 6 117 0 0



Term-context matrix for word similarity 

• Two words are similar in meaning if their context 
vectors are similar 
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aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0



The word-word or word-context matrix 

• Instead of entire documents, use smaller contexts 

• Paragraph 

• Window of ± 4 words 

• A word is now defined by a vector over counts of 
context words 

• Instead of each vector being of length D 

• Each vector is now of length |V| 

• The word-word matrix is |V|x|V| 13 



Word-Word matrix 
Sample contexts ± 7 words 
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aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

… … 



Word-word matrix 

• We showed only 4x6, but the real matrix is 50,000 x 50,000 
• So it’s very sparse 

• Most values are 0. 

• That’s OK, since there are lots of efficient algorithms for sparse matrices. 

• The size of windows depends on your goals 
• The shorter the windows , the more syntactic the representation 

± 1-3 very syntacticy 

• The longer the windows, the more semantic the representation 

± 4-10 more semanticy 
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Vector Semantics 

Positive Pointwise Mutual 
Information (PPMI) 



Problem with raw counts 

• Raw word frequency is not a great measure of 
association between words 
• It’s very skewed 

• “the” and “of” are very frequent, but maybe not the most 
discriminative 

• We’d rather have a measure that asks whether a context word is 
particularly informative about the target word. 

• Positive Pointwise Mutual Information (PPMI) 
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Pointwise Mutual Information 

Pointwise mutual information:  
Do events x and y co-occur more than if they were independent? 

 

 

PMI between two words:  (Church & Hanks 1989) 

 Do words x and y co-occur more than if they were independent?  

 

PMI 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 = log2

𝑃(𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2)

𝑃 𝑤𝑜𝑟𝑑1 𝑃(𝑤𝑜𝑟𝑑2)
 

 

PMI(X,Y ) = log2

P(x,y)
P(x)P(y)



Positive Pointwise Mutual Information 

• PMI ranges from −∞  to + ∞ 

• But the negative values are problematic 

• Things are co-occurring less than we expect by chance 

• Unreliable without enormous corpora 
• Imagine w1 and w2 whose probability is each 10-6 

• Hard to be sure p(w1,w2) is significantly different than 10-12  

• Plus it’s not clear people are good at “unrelatedness” 

• So we just replace negative PMI values by 0 

• Positive PMI (PPMI) between word1 and word2: 

PPMI 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 = max log2

𝑃(𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2)

𝑃 𝑤𝑜𝑟𝑑1 𝑃(𝑤𝑜𝑟𝑑2)
, 0  

 

 
 



Computing PPMI on a term-context matrix 

• Matrix F with W rows (words) and C columns (contexts) 

• fij is # of times wi occurs in context cj 
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p(w=information,c=data) =  

p(w=information) = 

p(c=data) = 
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p(w,context) p(w)

computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .32 6/19 

11/19 = .58 

7/19 = .37 

pij =
fij

fij
j=1

C

å
i=1

W

å

p(wi ) =

fij
j=1

C

å

N
p(c j ) =

fij
i=1

W

å

N
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pmiij = log2

pij

pi*p* j

• pmi(information,data) = log2 ( 

p(w,context) p(w)

computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11

pineapple 0.00 0.00 0.05 0.00 0.05 0.11

digital 0.11 0.05 0.00 0.05 0.00 0.21

information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)

computer data pinch result sugar

apricot - - 2.25 - 2.25

pineapple - - 2.25 - 2.25

digital 1.66 0.00 - 0.00 -

information 0.00 0.57 - 0.47 -

.32 / (.37*.58) )  = .58 
(.57 using full precision) 



Weighting PMI 

• PMI is biased toward infrequent events 

• Very rare words have very high PMI values 

• Two solutions: 

• Give rare words slightly higher probabilities 

• Use add-one smoothing (which has a similar effect) 
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Weighting PMI: Giving rare context words 
slightly higher probability 

• Raise the context probabilities to 𝛼 = 0.75: 

 

 

 

• This helps because 𝑃𝛼 𝑐 > 𝑃 𝑐  for rare c 

• Consider two events, P(a) = .99 and P(b)=.01 

• 𝑃𝛼 𝑎 =
.99.75

.99.75+.01.75 = .97  𝑃𝛼 𝑏 =
.01.75

.01.75+.01.75 = .03 
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Use Laplace (add-1) smoothing 
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Add-2	Smoothed	Count(w,context)

computer data pinch result sugar

apricot 2 2 3 2 3

pineapple 2 2 3 2 3

digital 4 3 2 3 2

information 3 8 2 6 2

p(w,context)	[add-2] p(w)

computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20

pineapple 0.03 0.03 0.05 0.03 0.05 0.20

digital 0.07 0.05 0.03 0.05 0.03 0.24

information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17



PPMI versus add-2 smoothed PPMI 
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PPMI(w,context)	[add-2]

computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56

pineapple 0.00 0.00 0.56 0.00 0.56

digital 0.62 0.00 0.00 0.00 0.00

information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)

computer data pinch result sugar

apricot - - 2.25 - 2.25

pineapple - - 2.25 - 2.25

digital 1.66 0.00 - 0.00 -

information 0.00 0.57 - 0.47 -



Vector Semantics 

Measuring similarity: the 
cosine 



Measuring similarity 

• Given 2 target words v and w 

• We’ll need a way to measure their similarity. 

• Most measure of vectors similarity are based on the: 

• Dot product or inner product from linear algebra 

 

 
• High when two vectors have large values in same dimensions.  

• Low (in fact 0) for orthogonal vectors with zeros in complementary 
distribution 
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Problem with dot product 

• Dot product is longer if the vector is longer. Vector length: 

 

 

 

• Vectors are longer if they have higher values in each dimension 

• That means more frequent words will have higher dot products 

• That’s bad: we don’t want a similarity metric to be sensitive to 
word frequency 30 



Solution: cosine 

• Just divide the dot product by the length of the two vectors! 

 

 

• This turns out to be the cosine of the angle between them! 
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Cosine for computing similarity 

cos(v,w) =
v ·w

v w
=
v

v
·
w

w
=

viwii=1

N

å

vi
2

i=1

N

å wi
2

i=1

N

å

Dot product Unit vectors 

vi is the PPMI value for word v in context i  
wi is the PPMI value for word w in context i.  
 

Cos(v,w) is the cosine similarity of v and w 

Sec. 6.3 



Cosine as a similarity metric 

• -1: vectors point in opposite directions  

• +1:  vectors point in same directions 

• 0: vectors are orthogonal 

 

 

• Raw frequency or PPMI are non-
negative, so  cosine range 0-1 
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large data computer 

apricot 2 0 0 

digital 0 1 2 

information 1 6 1 
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Which pair of words is more similar? 

cosine(apricot,information) =  

 

cosine(digital,information) = 

 

cosine(apricot,digital) = 

 

cos(v,w) =
v ·w

v w
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v
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w
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0+1+ 4

0+1+ 4

     0 + 6 + 2    

     0 + 0 + 0    

=
8

38 5
= .58

= 0

2 + 0 + 0 

2 + 0 + 0  
=  

2

2 38
=  .23 



Visualizing vectors and angles 
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Dimension 2: ‘data’35 

large data 

apricot 2 0 

digital 0 1 

information 1 6 



Clustering vectors to 
visualize similarity in 
co-occurrence 
matrices 

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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Other possible similarity measures 

 



Vector Semantics 

Measuring similarity: the 
cosine 



Using syntax to define a word’s context 

• Zellig Harris (1968) 

“The meaning of entities, and the meaning of grammatical 
relations among them, is related to the restriction of 
combinations of these entities relative to other entities” 

• Two words are similar if they have similar syntactic contexts 

Duty and responsibility have similar syntactic distribution: 

                                                                  Modified by 
adjectives 

additional, administrative, assumed, collective, 
congressional, constitutional … 

Objects of verbs assert, assign, assume, attend to, avoid, become, breach.. 



Co-occurrence vectors based on syntactic dependencies 

• Each dimension: a context word in one of R grammatical relations 
• Subject-of- “absorb” 

• Instead of a vector of |V| features, a vector of R|V| 

• Example: counts for the word cell : 

Dekang Lin, 1998 “Automatic Retrieval and Clustering of Similar Words” 



Syntactic dependencies for dimensions 

• Alternative (Padó and Lapata 2007): 
• Instead of having a |V| x R|V| matrix 

• Have a |V| x |V| matrix 

• But the co-occurrence counts aren’t just counts of words in a window 

• But counts of words that occur in one of R dependencies (subject, object, 
etc). 

• So M(“cell”,”absorb”) = count(subj(cell,absorb)) + count(obj(cell,absorb)) 
+ count(pobj(cell,absorb)),  etc. 

 

41 



PMI applied to dependency relations 

• “Drink it” more common than “drink wine” 

• But “wine” is a better “drinkable” thing than “it” 

Object of “drink” Count PMI 

it 3 1.3 

anything 3 5.2 

wine 2 9.3 

tea 2 11.8 

liquid 2 10.5 

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL 

Object of “drink” Count PMI 

tea 2 11.8 

liquid 2 10.5 

wine 2 9.3 

anything 3 5.2 

it 3 1.3 



Alternative to PPMI for measuring 
association 

• tf-idf  (that’s a hyphen not a minus sign) 

• The combination of two factors 
• Term frequency (Luhn 1957): frequency of the word (can be logged) 

• Inverse document frequency (IDF) (Sparck Jones 1972) 

• N is the total number of documents 

• dfi = “document frequency of word i” 

•     = # of documents with word I 

• wij = word i in document j 

  wij=tfij idfi 
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idf
i

= log
N

df
i
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ç
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÷
÷



tf-idf not generally used for word-word 
similarity 

• But is by far the most common weighting when we are 
considering the relationship of words to documents 
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Vector Semantics 

Evaluating similarity 



Evaluating similarity 

• Extrinsic (task-based, end-to-end) Evaluation: 
• Question Answering 

• Spell Checking 

• Essay grading 

• Intrinsic Evaluation: 
• Correlation between algorithm and human word similarity ratings 

• Wordsim353: 353 noun pairs rated 0-10.   sim(plane,car)=5.77 

• Taking TOEFL multiple-choice vocabulary tests 
• Levied is closest in meaning to: 

 imposed, believed, requested, correlated 

 



Summary 

• Distributional (vector) models of meaning 

• Sparse (PPMI-weighted  word-word co-occurrence matrices) 

• Dense: 

• Word-word  SVD 50-2000 dimensions 

• Skip-grams and CBOW  

• Brown clusters 5-20 binary dimensions. 
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Vector Semantics 

Dense Vectors  



Sparse versus dense vectors 

• PPMI vectors are 

• long (length |V|= 20,000 to 50,000) 

• sparse (most elements are zero) 

• Alternative: learn vectors which are 

• short (length 200-1000) 

• dense (most elements are non-zero) 

49 



Sparse versus dense vectors 

• Why dense vectors? 

• Short vectors may be easier to use as features in machine 
learning (less weights to tune) 

• Dense vectors may generalize better than storing explicit counts 

• They may do better at capturing synonymy: 

• car and automobile are synonyms; but are represented as 
distinct dimensions; this fails to capture similarity between a 
word with car as a neighbor and a word with automobile as a 
neighbor 
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Three methods for getting short dense 
vectors 

• Singular Value Decomposition (SVD) 

• A special case of this is called LSA – Latent Semantic Analysis 

• “Neural Language Model”-inspired predictive models 

• skip-grams and CBOW 

• Brown clustering 
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Vector Semantics 

Dense Vectors via SVD 



Intuition 

• Approximate an N-dimensional dataset using fewer dimensions 

• By first rotating the axes into a new space 

• In which the highest order dimension captures the most 
variance in the original dataset 

• And the next dimension captures the next most variance, etc. 

• Many such (related) methods: 
• PCA – principle components analysis 

• Factor Analysis 

• SVD 
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Dimensionality reduction 



Singular Value Decomposition 

55 

Any rectangular w x c matrix X equals the product of 3 matrices: 

W: rows corresponding to original but m columns represents a 
dimension in a new latent space, such that  

• M column vectors are orthogonal to each other 

• Columns are ordered by the amount of variance in the dataset each new 
dimension accounts for 

S:  diagonal m x m matrix of singular values expressing the 
importance of each dimension. 

C: columns corresponding to original but m rows corresponding to 
singular values 

 



Singular Value Decomposition 

56 Landuaer and Dumais 1997 



SVD applied to term-document matrix: 
Latent Semantic Analysis 

• If instead of keeping all m dimensions, we just keep the top k 
singular values. Let’s say 300. 

• The result is a least-squares approximation to the original X 

• But instead of multiplying,                                                                    
we’ll just make use of W. 

• Each row of W: 
• A k-dimensional vector 

• Representing word W 
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Deerwester et al (1988) 



LSA more details 

• 300 dimensions are commonly used 

• The cells are commonly weighted by a product of two weights 
• Local weight:  Log term frequency 

• Global weight: either idf or an entropy measure 
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Let’s return to PPMI word-word matrices 

• Can we apply to SVD to them? 
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SVD applied to term-term matrix 

60 (I’m simplifying here by assuming the matrix has rank |V|) 



Truncated SVD on term-term matrix 
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Truncated SVD produces embeddings 

62 

• Each row of W matrix is a k-dimensional 
representation of each word w 

• K might range from 50 to 1000 

• Generally we keep the top k dimensions, 
but some experiments suggest that 
getting rid of the top 1 dimension or  even 
the top 50 dimensions is helpful (Lapesa 
and Evert 2014). 

 



Embeddings versus sparse vectors 

• Dense SVD embeddings sometimes work better than 
sparse PPMI matrices at tasks like word similarity 
• Denoising: low-order dimensions may represent unimportant 

information 

• Truncation may help the models generalize better to unseen data. 

• Having a smaller number of dimensions may make it easier for 
classifiers to properly weight the dimensions for the task. 

• Dense models may do better at capturing higher order co-
occurrence.  
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Vector Semantics 

Embeddings inspired by 
neural language models: 

skip-grams and CBOW 



Prediction-based models: 
An alternative way to get dense vectors 

• Skip-gram (Mikolov et al. 2013a)  CBOW (Mikolov et al. 2013b) 

• Learn embeddings as part of the process of word prediction. 

• Train a neural network to predict neighboring words 
• Inspired by neural net language models. 

• In so doing, learn dense embeddings for the words in the training corpus. 

• Advantages: 
• Fast, easy to train (much faster than SVD) 

• Available online in the word2vec package 

• Including sets of pretrained embeddings! 
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Skip-grams 

• Predict each neighboring word  

• in a context window of 2C words  

• from the current word.  

• So for C=2, we are given word wt and predicting these 
4 words: 
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Skip-grams learn 2 embeddings 
for each w 

input embedding v, in the input matrix W 

• Column i of the input matrix W is the 1×d 
embedding vi for word i in the vocabulary.  

 

output embedding v′, in output matrix W’ 

• Row i of the output matrix W′ is a d × 1 
vector embedding v′i for word i in the 
vocabulary. 
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Setup 

• Walking through corpus pointing at word w(t), whose index in 

the vocabulary is j, so we’ll call it wj (1 < j < |V |).  

• Let’s predict w(t+1) , whose index in the vocabulary is k (1 < k < 
|V |). Hence our task is to compute P(wk|wj).  
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Intuition: similarity as dot-product 
between a target vector and context vector 
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Similarity is computed from dot product 

• Remember: two vectors are similar if they have a high 
dot product 

• Cosine is just a normalized dot product 

• So: 

• Similarity(j,k)  ∝ ck ∙ vj 

• We’ll need to normalize to get a probability 
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Turning dot products into probabilities 

• Similarity(j,k) = ck ∙ vj 

 

• We use softmax to turn into probabilities 
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Embeddings from W and W’ 

• Since we have two embeddings, vj and cj for each word wj 
• We can either: 

• Just use vj 

• Sum them 

• Concatenate them to make a double-length embedding 
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Learning 

• Start with some initial embeddings (e.g., random) 

• iteratively make the embeddings for a word  
• more like the embeddings of its neighbors  

• less like the embeddings of other words.  
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Visualizing W and C as a network for doing 
error backprop 
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One-hot vectors 

• A vector of length |V|  

• 1 for the target word and 0 for other words 

• So if “popsicle” is vocabulary word 5 

• The one-hot vector is 

• [0,0,0,0,1,0,0,0,0…….0] 
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Skip-gram 
h = vj 

o = Ch 

ok = ckh 

ok = ck∙vj 



Problem with the softamx 

• The denominator: have to compute over every word in vocab 

 

 

 

• Instead: just sample a few of those negative words 

77 



Goal in learning 

• Make the word like the context words 

 

• We want this to be high: 

 

• And not like k randomly selected “noise words” 

 

• We want this to be low: 
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Skipgram with negative sampling: 
Loss function 
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Relation between skipgrams and PMI! 

• If we multiply WW’T  

• We get a |V|x|V| matrix M , each entry mij corresponding to 
some association between input word i and output word j  

• Levy and Goldberg (2014b) show that skip-gram reaches its 
optimum just when this matrix is a shifted version of PMI: 

   WW′T =MPMI −log k  

• So skip-gram is implicitly factoring a shifted version of the PMI 
matrix into the two embedding matrices. 
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Properties of embeddings 

81 

• Nearest words to some embeddings (Mikolov et al. 20131) 



Embeddings capture relational meaning! 

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’) 

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’) 
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Vector Semantics 

Brown clustering 



Brown clustering 

• An agglomerative clustering algorithm that clusters words based 
on which words precede or follow them 

• These word clusters can be turned into a kind of vector 

• We’ll give a very brief sketch here. 
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Brown clustering algorithm 

• Each word is initially assigned to its own cluster.  

• We now consider consider merging each pair of clusters. Highest 
quality merge is chosen. 
• Quality = merges two words that have similar probabilities of preceding 

and following words 

• (More technically quality = smallest decrease in the likelihood of the 
corpus according to a class-based language model)  

• Clustering proceeds until all words are in one big cluster.  
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Brown Clusters as vectors 

• By tracing the order in which clusters are merged, the model 
builds a binary tree from bottom to top. 

• Each word represented by binary string = path from root to leaf 

• Each intermediate node is a cluster  

• Chairman is 0010, “months” = 01, and verbs = 1 
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Brow n A lgorithm

• W ords m erged according to contextual 
sim ilarity

• C lusters are equivalent to bit-string prefixes

• Prefix length determ ines the granularity of 
the clustering

011

president

walk

run sprint
chairman

CEO November October

0 1

00 01

00110010

001

10 11

000 100 101010



Brown cluster examples 
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Class-based language model 

• Suppose each word was in some class ci: 
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19.7 • B R O W N C LU ST ER IN G 19

Figure 19.15 Vector offsets show ing relationalproperties of the vector space,show n by
projecting vectorsonto tw o dim ensionsusing PCA .In theleftpanel,’king’-’m an’+’w om an’
isclose to ’queen’.In the right,w e see the w ay offsetsseem to capture gram m aticalnum ber.
(M ikolov etal.,2013b).

19.7 Brow n Clustering

Brow n clustering (Brow n etal.,1992)isan agglom erative clustering algorithm forBrow n
clustering

deriving vectorrepresentations ofw ordsby clustering w ordsbased on theirassocia-
tionsw ith the preceding orfollow ing w ords.

The algorithm m akes use of the class-based language m odel (Brow n et al.,class-based
language m odel

1992),am odelin w hich each w ord w 2 V belongsto aclassc2 C w ith aprobability
P(w|c). Class based LM s assigns a probability to a pairofw ords w i− 1 and w i by
m odeling the transition betw een classes ratherthan betw een w ords:

P(w i|w i− 1)= P(ci|ci− 1)P(w i|ci) (19.32)

The class-based LM can be used to assign aprobability to an entire corpusgiven
a particularly clustering C asfollow s:

P(corpus|C )=
nY

i− 1

P(ci|ci− 1)P(w i|ci) (19.33)

Class-based language m odels are generally notused as a language m odelfor ap-
plications like m achine translation orspeech recognition because they don’tw ork
as w ellas standard n-gram s orneurallanguage m odels. Butthey are an im portant
com ponentin Brow n clustering.

Brow n clustering is a hierarchicalclustering algorithm . Let’s consider a naive
(albeitinefficient)version ofthe algorithm :

1. Each w ord isinitially assigned to itsow n cluster.

2. W e now consider consider m erging each pair of clusters. The pair w hose
m ergerresultsin thesm allestdecrease in thelikelihood ofthe corpus(accord-
ing to the class-based language m odel)ism erged.

3. Clustering proceedsuntilallw ordsare in one big cluster.

Tw o w ordsare thusm ostlikely to be clustered ifthey have sim ilarprobabilities
forpreceding and follow ing w ords,leading to m ore coherentclusters.The resultis
thatw ordsw illbe m erged ifthey are contextually sim ilar.

By tracing the orderin w hich clustersare m erged,the m odelbuildsa binary tree
from bottom to top,in w hich the leaves are the w ords in the vocabulary,and each
interm ediate node in the tree represents the cluster thatis form ed by m erging its
children.Fig.19.16 show sa schem atic view ofa partofa tree.
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19.7 B row n C lustering

B row n clustering (B row n etal.,1992)isan agglom erative clustering algorithm forB row n
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deriving vectorrepresentations ofw ordsby clustering w ordsbased on theirassocia-
tions w ith the preceding orfollow ing w ords.
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1992),a m odelin w hich each w ord w 2 V belongsto a classc2 C w ith a probability
P(w |c). C lass based LM s assigns a probability to a pair of w ords w i− 1 and w i by
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The class-based LM can be used to assign a probability to an entire corpusgiven
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ing to the class-based language m odel)ism erged.

3. C lustering proceeds untilallw ordsare in one big cluster.

Tw o w ordsare thus m ostlikely to be clustered ifthey have sim ilarprobabilities
forpreceding and follow ing w ords,leading to m ore coherentclusters. The resultis
thatw ordsw illbe m erged ifthey are contextually sim ilar.

B y tracing the orderin w hich clusters are m erged,the m odelbuildsa binary tree
from bottom to top,in w hich the leaves are the w ords in the vocabulary,and each
interm ediate node in the tree represents the cluster that is form ed by m erging its
children.Fig.19.16 show sa schem atic view ofa partofa tree.


