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1. Introduction

Finite smooth mixtures, or mixtures of experts (ME) as they are known in the machine
learning literature, are increasingly popular in the statistical literature since their introduction
in Jacobs et al. (1991). A smooth mixture is a mixture of regression models where the mixing
probabilities are functions of the covariates, leading to a partitioned covariate space with
stochastic (soft) boundaries. The first applications of smooth mixtures focused on flexible
modeling of the mean function E(y|x), but more recent works explore their potential for
nonparametric modeling of conditional densities p(y|x). A smooth mixture models p(y|x)
non-parametrically for any given x, but is also flexible across different covariate values.

Smooth mixtures are capable of approximating a large class of conditional distributions.
For example, Jiang and Tanner (1999a,b) show that smooth mixtures with sufficiently many
(generalized) linear regression mixture components can approximate any density in the ex-
ponential family with arbitrary smooth mean function. More recently, Norets (2010) proves
results for a mixture of Gaussian components under fairly general regularity conditions. See
also Zeevi and Meir (1997) for additional results along these lines.

Like any mixture model, a smooth mixture may have a fairly complex multimodal likelihood
surface. The choice of estimation method is therefore a key ingredient for successfully im-
plementing smooth mixture models. Jordan and Jacobs (1994) employ the expectation maxi-
mization (EM) algorithm for the ME model, and similar optimization algorithms are popular
in the machine learning field. Some recent approaches to smooth mixtures are Bayesian, with
the computation implemented by Markov Chain Monte Carlo (MCMC) methods. The first
Bayesian paper on smooth mixtures is Peng et al. (1996) who use the random walk Metrop-
olis algorithm to sample from the posterior. More sophisticated algorithms are proposed by
Wood et al. (2002), Geweke and Keane (2007) and Villani et al. (2009).

The initial work on smooth mixtures in the machine learning literature advocated what
may be called a simple-and-many approach with very simple mixture components (constants
or linear homoscedastic regressions), but many of them. This practice is partly because es-
timating complicated component models was somewhat difficult in the pre and early days
of MCMC, but probably also reflects an underlying divide-and-conquer philosophy in the
machine learning literature. More recent implementations of smooth mixtures with access
to MCMC technology successively introduce more flexibility within the components. This
complex-and-few strategy tries to model nonlinearities and non-Gaussian features within the
components and relies less on the mixture to generate the required flexibility, i.e. mixtures
are used only when needed. For example, Wood et al. (2002) and Geweke and Keane (2007)
use basis expansion methods (splines and polynomials) to allow for nonparametric compo-
nent regressions. Further progress is made in Villani et al. (2009) who propose the Smooth
Adaptive Gaussian Mixture (SAGM) model as a flexible model for regression density estima-
tion. Their model is a finite mixture of Gaussian densities with the mixing probabilities, the
component means and component variances modeled as (spline) functions of the covariates.
Li et al. (2010) extend this model to asymmetric student’s t components with the location,
scale, skewness and degrees of freedom all modeled as functions of covariates. Villani et al.
(2009) and Li et al. (2010) show that a single complex component can often give a better
and numerically more stable fit in substantially less computing time than a model with many
simpler components. As an example, simulations and real applications in Villani et al. (2009)
show that a mixture of homoscedastic regressions can fail to fit heteroscedastic data even
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with a very large number of components. Having heteroscedastic components in the mixture
is therefore crucial for accurately modeling heteroscedastic data. The empirical stock returns
example in Li et al. (2010) shows that including heavy-tailed components in the mixture can
improve on the SAGM model when modeling heteroscedastic heavy-tailed distributions. This
finding is backed up by the theoretical results in Norets (2010).

This chapter further explores the simple-and-many vs complex-and-few issue by modeling
regression data with a skewed response variable. A simulation study shows that it may
be difficult to model a skewed conditional density by a smooth mixture of heteroscedastic
Gaussian components (like SAGM). Introducing skewness within the components can improve
the fit substantially.

We use the efficient Markov chain Monte Carlo (MCMC) method in Villani et al. (2009)
to simulate draws from the posterior distribution in smooth mixture models; see Section
3.1. This algorithm allows for Bayesian variable selection in all parameters of the density,
and in the mixture weights. Variable selection mitigates problems with over-fitting, which is
particularly important in models with complex mixture components. The automatic pruning
effect achieved by variable selection in a mixture context is illustrated in Section 4.2 on the
LIDAR data. Reducing the number of effective parameters by variable selection also helps
the MCMC algorithm to converge faster and mix better.

Section 4.3 uses smooth mixtures of Gaussians and split-t components to model the elec-
tricity expenditure of households. To take into account that expenditures are positive, and
more generally to handle positive dependent variables, we also introduce two smooth mixtures
for strictly positively valued data: a smooth mixture of gamma densities and smooth mixture
of log normal densities. In both cases we use an interpretable re-parametrized density where
the mean and the (log) variance are modeled as functions of the covariates.

2. The model and prior

2.1. Smooth mixtures. Our model for the conditional density p(y|x) is a finite mixture
density with weights that are smooth functions of the covariates,

p(y|x) =
K∑

k=1

ωk(x)pk(y|x), (1)

where pk(y|x) is the kth component density with weight ωk(x). The next subsection discusses
specific component densities pk(y|x). The weights are modeled by a multinomial logit function

ωk(x) =
exp(x′γk)∑K
r=1 exp(x

′γr)
, (2)

with γ1 = 0 for identification. The covariates in the components can in general be different
from the covariates in the mixture weights.

To simplify the MCMC simulation, we express the mixture model in terms of latent variables
as in Diebolt and Robert (1994) and Escobar and West (1995). Let s1, ..., sn be unobserved
indicator variables for the observations in the sample such that si = k means that the ith
observation belongs to the kth component, pk(y|x). The model in (1) and (2) can then be
written as

Pr(si = k|xi, γ) = ωk(xi)

yi|(si = k, xi) ∼ pk(yi|xi).
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Conditional on s = (s1, ..., sn)
′, the mixture model decomposes into K separate component

models p1(y|x), ..., pK (y|x), with each data observation being allocated to one and only one
component.

2.2. The component models. The component densities in SAGM (Villani et al.; 2009) are
Gaussian with both the mean and variance functions of covariates,

y|x, s = k ∼ N
[
µk(x), σ

2
k(x)

]
,

where

µk(x) = βµ0,k + x′βµ,k lnσ2k(x) = βσ0,k + x′βσ,k (3)

Note that each mixture components has its own set of parameters. We will suppress the
component subscript k in the remainder of this section, but, unless stated otherwise, all
parameters are component-specific. SAGM uses a linear link function for the mean and log
link for the variance, but any smooth link function can equally well be used in our MCMC
methodology. Additional flexibility can be obtained by letting a subset of the covariates be a
non-linear basis expansions, e.g. additive splines or splines surfaces (Ruppert et al.; 2003) as
in Villani et al. (2009); see also the LIDAR example in Section 4.2.

SAGM is in principle capable of capturing heavy-tailed and skewed data. In line with the
complex-and-few approach it may be better however to use mixture components that allow
for skewness and excess kurtosis. Li et al. (2010) extend the SAGM model to components
that are split-t densities according to the following definition.

Definition 1 (Split-t distribution). The random variable y follows a split-t distribution with
ν > 0 degrees of freedom, if its density function is of the form

p (y;µ, φ, λ, ν) = c · κ(y;µ, φ, ν)1y≤µ + c · κ(y;µ, λφ, ν)1y>µ,

where

κ(y;µ, φ, ν) =

[
1 +

(
y − ν

φ

)2

ν−1

]− ν+1

2

,

is the kernel of a student’s t density with variance φ2ν/(ν−2) and c = 2[(1+λ)φ
√
νBeta(ν/2, 1/2)]−1

is the normalization constant.

The location parameter µ is the mode, φ > 0 is the scale parameter, and λ > 0 is the
skewness parameter. When λ < 1 the distribution is skewed to the left, when λ > 1 it is
skewed to the right, and when λ = 1 it reduces to the usual symmetric student’s t density.
The split-t distribution reduces to the split-normal distribution in Gibbons and Mylroie (1973)
and John (1982) as ν → ∞. Any other asymmetric t density can equally well be used in our
MCMC methodology, see Section 3.1.

Each of the four parameters µ, φ, λ and ν are connected to covariates as

µ = βµ0
+ x′βµ, lnφ = βφ0

+ x′βφ,
ln ν = βν0 + x′βν , lnλ = βλ0

+ x′βλ,
(4)

but, as mentioned above, any smooth link function can equally well be used in the MCMC
methodology.

Section 4.3 applies smooth mixtures in a situation where the response is non-negative. Nat-
ural mixture components are then Gamma and log-normal densities. The Gamma components
are of the form
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y|s, x ∼ Gamma

(
µ2

σ2
,
σ2

µ

)
,

where
lnµ(x) = βµ0

+ x′βµ lnσ2(x) = βσ0
+ x′βσ , (5)

where we have again suppressed the component labels. Note that we use an interpretable
parametrization of the Gamma distribution where µ and σ2 are the mean and variance,
respectively.

Similarly, the log-normal components are of the form

y|s, x ∼ LogN

(
lnµ− 1

2
ln

(
1 +

σ2

µ2

)
,

√
ln

(
1 +

σ2

µ2

))
,

where
lnµ(x) = βµ0

+ x′βµ, lnσ2(x) = βσ0
+ x′βσ . (6)

Again, the two parameters, µ and σ2, are the mean and variance.
A smooth mixture of complex densities is a model with a large number of parameters,

however, and is therefore likely to over-fit the data unless model complexity is controlled ef-
fectively. We use Bayesian variable selection on all the component’s parameters, and in the
mixing function. This can lead to important simplifications of the mixture components. Not
only does this control complexity for a given number of components, but it also simplifies the
existing components if an additional component is added to the model (the LIDAR example
in 4.2 illustrates this well). Increasing the number of components can therefore in principle
even reduce the number of effective parameters in the model. It may nevertheless be useful
to put additional structure on the mixture components before estimation. One particularly
important restriction is that one or more component parameters are common to all compo-
nents. A component parameter (e.g. ν in the split-t model in 4) is said to be common to the
components when only the intercepts in (4) are allowed to be different across components.
The unrestricted model is said to have separate components.

The regression coefficient vectors, e.g. βµ, βφ, βν and βλ in the split-t model, are all treated
in a unified way in the MCMC algorithm. Whenever we refer to a regression coefficient vector
without subscript, β, the argument applies to any of the regression coefficient vector of the
split-t parameters in (4).

2.3. The prior. We now describe an easily specified prior for smooth mixtures, proposed by
Villani et al. (2010) that builds on Ntzoufras et al. (2003) and depends only on a few hyper-
parameters. Since there can be a large number of covariates in the model, the strategy in
Villani et al. (2010) is to incorporate available prior information via the intercepts, and to use
a unit-information prior that automatically takes the model geometry and link function into
account.

We standardize the covariates to have zero mean and unit variance, and assume prior
independence between the intercept and the remaining regression coefficients. The intercepts
then have the interpretation of being the (possibly transformed) density parameters at the
mean of the original covariates. The strategy in Villani et al. (2010) is to specify priors
directly on the parameters of the mixture component, e.g. the degrees of freedom ν in the
split-t components, and then back out the implied on the intercept βν0 . For example, a normal
prior for a parameter with identity link (e.g. µ in the split-t model) trivially implies a normal
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prior on βµ0; a log-normal prior with mean m∗ and variance s∗2 for a parameter with log link
(e.g. φ in the split-t model) implies a normal prior N(m0, s

2
0) for βφ0

where

m0 = lnm∗ − 1

2
ln

[(
s∗

m∗

)2

+ 1

]
and s20 = ln

[(
s∗

m∗

)2

+ 1

]
.

The regression coefficients vectors are assumed to be independent a priori. We allow for
Bayesian variable selection by augmenting each parameter vector β by a vector of binary
covariate selection indicators I = (i1, ..., ip) such that βj = 0 if ij = 0. Let βI denote the
subset of β selected by I. In a Gaussian linear regression one can use a g-prior (Zellner;
1986) β ∼ N [0, τ2β(X

′X)−1] on the full β and then condition on the restrictions imposed by

I. Setting τ2 = n, where n is the number of observations, gives the unit-information prior,
i.e. a prior that carries information equivalent to a single observation from the model. More
generally, the unit information prior is β ∼ N [0, τ2βI−1(β)] where

I(β) = −E

[
∂2 ln p(β|y)
∂β∂β′

∣∣∣∣
β=β̄

]

and β̄ = (β0, 0, ..., 0)
′ is the prior mean of β. When the analytical form of the expected Hessian

matrix is not available in closed form, we simulate replicated data sets from a model with
parameter vector β0, and approximate the expected Hessian by the average Hessian over the
simulated data sets.

The variable selection indicators are assumed to be independent Bernoulli variables with
probability πβ a priori, but more complicated distributions are easily accommodated, see e.g.
the extension in Villani et al. (2009) for splines in a mixture context, or a prior which is
uniform on the variable selection indicators for a given model size in Denison et al. (2002). It
is also possible to estimate πβ as proposed in Kohn et al. (2001) with an extra Gibbs sampling
step. Note also that πβ may be different for each parameter in the mixture components. Our
default prior has πβ = 0.5.

The prior on the mixing function decomposes as

p(γ,Z, s) = p(s|γ,Z)p(γ|Z)p(Z),

where Z is the p × (K − 1) matrix with variable selection indicators for the p covariates in
the mixing function (recall that γ1 = 0 for identification). The variable indicators in Z are
assumed to be iid Bernoulli(ωγ). Let γZ be the prior on γ = (γ′2, ..., γ

′
m)′ of the form

γZ |Z ∼ N(0, τ2γ I),

and γZc = 0 with probability one. We use τ2γ = 10 as the default value. Finally, p(s|γ,Z)
is given by the multinomial logit model in (2). To reduce the number of parameters and to
speed up the MCMC algorithm we restrict the columns of Z to be identical, i.e. we make
the assumption that a covariate is either present in the mixing function in all components,
or does not appear at all, but the extension to general Z is straightforward; see Villani et al.
(2009).

3. Inference methodology

3.1. The general MCMC scheme. We use MCMC methods to sample from the joint
posterior distribution, and draw the parameters and variable selection indicators in blocks.
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The algorithm below is the preferred algorithm from the experiments in Villani et al. (2009).
The number of components is determined by a Bayesian version of cross-validation discussed
in Section 3.3.

The MCMC algorithm is very general, but for conciseness we describe it for the smooth
mixture of split-t components. The algorithm is a Metropolis-within-Gibbs sampler that
draws parameters using the following six blocks:

(1) {(β(k)µ ,I(k)
µ )}k=1,...,K

(2) {(β(k)φ ,I(k)
φ )}k=1,...,K

(3) {(β(k)λ ,I(k)
λ )}k=1,...,K

(4) {(β(k)ν ,I(k)
ν )}k=1,...,K

(5) s = (s1, ..., sn)
(6) γ and IZ .

The parameters in the different components are independent conditional on s. This means
that each of the first four blocks split up into K independent updating steps. Each updating
step in the first four blocks is sampled using highly efficient tailored MH proposals following
a general approach described in the next subsection. The latent component indicators in
s are independent conditional on the model parameters and are drawn jointly from their
full conditional posterior. Conditional on s, Step 6 is a multinomial logistic regression with
variable selection, and γ and IZ are drawn jointly using a generalization of the method used
to draw blocks 1-4; see Villani et al. (2009) for details.

It is well known that the likelihood function in mixture models is invariant with respect
to permutations of the components, see e.g. Celeux et al. (2000), Jasra et al. (2005) and
Frühwirth-Schnatter (2006). The aim here is to estimate the predictive density, so label
switching is neither a numerical nor a conceptual problem (Geweke; 2007). If an interpretation
of the mixture components is required, then it is necessary to impose some identification
restrictions on some of the model parameters, e.g. an ordering constraint (Jasra et al.; 2005).
Restricting some parameters to be common across components is clearly also helpful for
identification.

3.2. Updating β and I using variable-dimension finite-step Newton proposals.

Nott and Leonte (2004) extend the method which was introduced by Gamerman (1997) for
generating MH proposals in a generalized linear model (GLM) to the variable selection case.
Villani et al. (2009) extend the algorithm to a general setting not restricted to the exponential
family. We first treat the problem without variable selection. The algorithm in Villani et al.
(2009) only requires that the posterior density can be written as

p(β|y) ∝ p(y|β)p(β) =
n∏

i=1

p(yi|ϕi)p(β), (7)

where ϕi = x′iβ and xi is a covariate vector for the ith observation. Note that p(β|y) may be
a conditional posterior density and the algorithm can then be used as a step in a Metropolis-
within-Gibbs algorithm. The full conditional posteriors for blocks 1–4 in Section 3.1 are clearly
all of the form in (7). Newton’s method can be used to iterate R steps from the current point

βc in the MCMC sampling toward the mode of p(β|y), to obtain β̂ and the Hessian at β̂. Note

that β̂ may not be the mode but is typically close to it already after a few Newton iterations,
so setting R = 1, 2 or 3 is usually sufficient. This makes the algorithm fast, especially when
the gradient and Hessian are available in closed form, which is the case here, see Appendix A.
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Having obtained good approximations of the posterior mode and covariance matrix from
the Newton iterations, the proposal βp is now drawn from the multivariate t-distribution with
g > 2 degrees of freedom:

βp|βc ∼ t


β̂, −

(
∂2 ln p(β|y)
∂β∂β′

)−1
∣∣∣∣∣
β=β̂

, g


 ,

where the second argument of the density is the covariance matrix.
In the variable selection case we propose β and I simultaneously using the decomposition

g(βp,Ip|βc,Ic) = g1(βp|Ip, βc)g2(Ip|βc,Ic),
where g2 is the proposal distribution for I and g1 is the proposal density for β conditional on
Ip. The Metropolis-Hasting acceptance probability is

a[(βc,Ic) → (βp,Ip)] = min

(
1,
p(y|βp,Ip)p(βp|Ip)p(Ip)g1(βc|Ic, βp)g2(Ic|βp,Ip)
p(y|βc,Ic)p(βc|Ic)p(Ic)g1(βp|Ip, βc)g2(Ip|βc,Ic)

)
.

The proposal density at the current point g1(βc|Ic, βp) is a multivariate t-density with mode

β̃ and covariance matrix equal to the negative inverse Hessian evaluated at β̃, where β̃ is
the point obtained by iterating R steps with the Newton algorithm, this time starting from
βp. A simple way to propose Ip is to randomly select a small subset of Ic and then always
propose a change of the selected indicators. It is important to note that βc and βp may now
be of different dimensions, so the original Newton iterations no longer apply. We will instead
generate βp using the following generalization of Newton’s method. The idea is that when
the parameter vector β changes dimensions, the dimension of the functionals ϕc = x′βc and
ϕp = x′βp stay the same, and the two functionals are expected to be quite close. A generalized
Newton update is

βr+1 = A−1
r (Brβr − sr), (r = 0, ..., R − 1), (8)

where β0 = βc, and the dimension of βr+1 equals the dimension of βp, and

sr = X ′
r+1d+

∂ ln p(β)

∂β

Ar = X ′
r+1DXr+1 +

∂2 ln p(β)

∂β∂β′

Br = X ′
r+1DXr +

∂2 ln p(β)

∂β∂β′
,

(9)

where d is an n-dimensional vector with gradients ∂ ln p(yi|ϕi)/∂ϕi for each observation cur-
rently allocated to the component being updated. Similarly, D is a diagonal matrix with
Hessian elements

∂2 ln p(yi|ϕi)

∂ϕi∂ϕ′
i

,

Xr is the matrix with the covariates that have non-zero coefficients in βr, and all expressions
are evaluated at β = βr. For the prior gradient this means that ∂ ln p(β)/∂β is evaluated at βr,
including all zero parameters, and that the sub-vector conformable with βr+1 is extracted from
the result. The same applies to the prior Hessian (which does not depend on β however, if the
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prior is Gaussian). Note that we only need to compute the scalar derivatives ∂ ln p(yi|φi)/∂φi
and ∂2 ln p(yi|φi)/∂φ2i .

3.3. Model comparison. The number of components is assumed known in our MCMC
scheme above. A Bayesian analysis via mixture models with an unknown number of compo-
nents is possible using e.g., Dirichlet process mixtures (Escobar and West; 1995), reversible
jump MCMC (Richardson and Green; 1997) and birth-and-death MCMC (Stephens; 2000).
The fundamental quantity determining the posterior distribution of the number of compo-
nents is the marginal likelihood of the models with different number of components. It is
well-known, however, that the marginal likelihood is sensitive to the choice of prior, and this
is especially true when the prior is not very informative, see e.g. Kass (1993) for a general
discussion and Richardson and Green (1997) in the context of density estimation.

Following Geweke and Keane (2007) and Villani et al. (2009), we therefore compare and
select models based on the out-of-sample Log Predictive Density Score (LPDS). By sacrificing
a subset of the observations to update/train the vague prior we remove much of the dependence
on the prior, and obtain a better assessment of the predictive performance that can be expected
for future observations. To deal with the arbitrary choice of which observations to use for
estimation and model evaluation, we use B-fold cross-validation of the log predictive density
score (LPDS):

1

B

B∑

b=1

ln p(ỹb|ỹ−b, x),

where ỹb is an nb-dimensional vector containing the nb observations in the bth test sample and
ỹ−b denotes the remaining observations used for estimation. If we assume that the observations
are independent conditional on θ, then

p(ỹb|ỹ−b, x) =

∫ ∏

i∈Tb

p(yi|θ, xi)p(θ|ỹ−b)dθ,

where Tb is the index set for the observations in ỹb, and the LPDS is easily computed by
averaging

∏
i∈Tb

p(yi|θ, xi) over the posterior draws from p(θ|ỹ−b). This requires sampling

from each of the B posteriors p(θ|ỹ−b) for b = 1, ..., B, but these MCMC runs can all be run
in isolation from each other and are therefore ideal for straight-forward parallel computing
on widely available multi-core processors. Cross-validation is less appealing in a time series
setting since it is typically false that the observations are independent conditional on the
model parameters for time series data. A more natural approach is to use the most recent
observations in a single test sample, see Villani et al. (2009).

4. Applications

4.1. A small simulation study. The simulation study in Villani et al. (2009) explores the
out-of-sample performance of a smooth mixture of homoscedastic Gaussian components for
heteroscedastic data. The study shows that a smooth mixture of heteroscedastic regressions
is likely to be a much more effective way of modelling heteroscedastic data. This section uses
simulations to explore how different smooth mixture models cope with skewed and heavy-
tailed data. We generate data from the following models:

(1) A one-component normal with mean µ = 0 and variance φ2 = 1 at x = x̄.
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(2) A split-normal with mean µ = 0, variance φ2 = 0.52 and skewness parameter λ = 5
at x = x̄.

(3) A student-t with mean µ = 0, variance φ2 = 1 and ν = 5 degrees of freedom at x = x̄.
(4) A split-t with mean µ = 0, variance φ2 = 1, ν = 5 degrees of freedom, and skewness

parameter λ = 5 at x = x̄.

Each of the parameters µ, φ, ν and λ are connected to four covariates (drawn independently
from the N(0, 1) distribution) as in (4). Two of the covariates have non-zero coefficients in
the data generating process, the other two have zero coefficients. The number of observations
in each simulated data set is 1000. We generate 30 data sets for each model and analyze them
with both SAGM and a smooth mixture of split-t components using 1-5 mixture components.
The priors for the parameters in the estimated models are set as in Table 1.

Table 1. Priors in the simulation study

µ φ ν λ

Mean 0 1 10 1
Std 10 1 7 0.8

We analyze the relative performance of SAGM and split-t by comparing the estimated
conditional densities q(y|x) with the true data-generating densities p(y|x) using estimates of
both the Kullback–Leibler divergence and the L2 distance, defined respectively as

DKL(p, q) =
n∑

i=1

p(yi|xi) ln
p(yi|xi)
q(yi|xi)

,

DL2 (p, q) = 100 ·
(

n∑

i=1

(q (yi|xi)− p (yi|xi))2
) 1

2

,

where {yi, xi}ni=1 is the estimation data.
Table 2 shows that when the true data is normal (DGP 1), both SAGM and Split-t do well

with a single component. The extra coefficients in the degrees of freedom and skewness in the
split-t are effectively removed by variable selection. SAGM improves a bit when components
are added, while the split-t gets slightly worse.

When the DGP also exhibits skewness (DGP 2), SAGM(1) performs much worse than split-
t(1). SAGM clearly improves with more components, but the fit of SAGM(5) is still much
worse than the one-component split-t. Note how variable selection makes the performance of
the split-t deteriorate only very slowly as we add unnecessary components.

The same story as in the skewed data situation holds when the data are heavy tailed (DGP
3), and when the data are both skewed and heavy tailed (DGP 4).

In conclusion, smooth mixtures with a few complex components can greatly outperform
smooth mixtures with many simpler components. Moreover, variable selection is effective
in down-weighting unnecessary aspects of the components and makes the results robust to
mis-specification of the number of components, even when the components are complex.

4.2. LIDAR data . Our first real data set comes from a technique that uses laser-emitted
light to detect chemical compounds in the atmosphere (LIDAR, LIght Detection And Rang-
ing). The response variable (logratio) consists of 221 observations on the log ratio of recieved
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Table 2. Kullback–Leibler and L2 distance between estimated models and
the true DGPs

Split-t SAGM

K 1 2 3 4 5 1 2 3 4 5

DGP 1 - Normal

DKL 1.06 1.40 1.54 1.79 2.19 1.31 1.03 0.90 0.95 1.05
DL2 1.73 2.64 3.18 6.11 8.33 2.21 1.52 1.34 1.46 1.71

DGP 2 - Split-normal

DKL 3.67 3.67 4.76 4.74 5.57 51.05 14.16 7.30 7.33 8.01
DL2 6.05 6.82 9.51 9.55 13.11 106.13 31.49 16.46 16.20 17.59

DGP 3 - Student-t

DKL 1.12 1.72 1.79 2.05 2.20 13.30 1.94 1.78 2.16 2.65
DL2 2.14 4.82 4.70 5.72 5.42 35.79 4.33 3.91 4.70 6.61

DGP 4 - Split-t

DKL 3.99 3.24 4.24 4.66 5.67 75.80 21.02 8.89 7.35 7.36
DL2 9.02 8.22 11.78 13.13 16.90 199.99 59.54 27.06 22.43 22.63

light from two laser sources: one at the resonance frequency of the target compound, and the
other from a frequency off this target frequency. The predictor is the distance travelled before
the light is reflected back to its source (range). The original data comes from Holst et al.
(1996) and has been analyzed by for example Ruppert et al. (2003) and Leslie et al. (2007).
Our aim is to model the predictive density p(logratio | range).

Leslie et al. (2007) show that a Gaussian model with nonparametric mean and variance
can capture this data set quite well. We will initially use the SAGM model in Villani et al.
(2009) with the mean, variance and mixing functions all modelled nonparametrically by thin
plate splines (Green and Silverman; 1994). Ten equidistant knots in each component are
used for each of these three aspects of the model. We use a version of SAGM where the
variance functions of the components are proportional to each other, i.e. only the intercepts
in the variance functions are allowed to be different across components. The more general
model with completely separate variance functions gives essentially the same LPDS, and the
posterior distributions of the component variance functions (identified by order-restrictions)
are largely over-lapping. We use the variable selection prior in Villani et al. (2009) where
the variable selection indicator for a knot κ in the kth mixture component is distributed
as Bernoulli [πβ · ωk(κ)]. This has the desirable effect of down-weighting knots in regions
where the corresponding mixture component has small probability. We compare our results
to the smoothly mixing regression (SMR) in Geweke and Keane (2007) which is a special case
of SAGM where the components’ variance functions are independent of the covariates and
any heteroscedasticity is generated solely by the mixture. We use a prior with m∗ = 0 and
s∗2 = 10 in the mean function, and m∗ = 1 and s∗2 = 1 in the variance function (see Section
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2.3). Given the scale of the data, these priors are fairly non-informative. As documented in
Villani et al. (2009) and Li et al. (2010), the estimated conditional density and the LPDS are
robust to variations in the prior.

Table 3. Log predictive density score (LPDS) over the five cross-validation
samples for the LIDAR data.

Linear components Thin plate components
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

SMR 26.564 59.137 63.162 48.399 61.571 62.985
SAGM 30.719 61.217 64.223 64.267 64.311 64.313

Table 3 displays the five-fold cross-validated LPDS for the SMR and SAGM models, both
when the components are linear in covariates and when they are modelled by thin plate splines.
The three SAGM models with splines have roughly the same LPDS. The SMR model needs
three components to come close the LPDS of the SAGM(1) model with splines, and even then
does not quite reach it. All the knots in the variance function of the SAGM models have
posterior inclusion probabilities smaller than 0.1, suggesting strongly that the (log) variance
function is linear in range. Figure 1 plots the LIDAR data and the 68% and 95% Highest
Posterior Density (HPD) regions in the predictive distribution p(logratio | range) from the
SMR(3) and the SAGM models with 1, 2 and 3 components. Perhaps the most interesting
result in Table 3 and Figure 1 is that SAGM models with more than one component do
not seem to overfit. This is quite remarkable since the one-component model fit the data
well, and additional components should therefore be a source of over-fitting. This is due to
the self-adjusting mechanism provided by the variable/knot selection prior where the already
present components automatically becomes simpler (more linear) as more components are
added to the model. The estimation results for the SAGM(3) model with spline components
(not shown) reveals that the SAGM(3) model with spline components is in fact reduced to
essentially a model with linear components. Figure 1 also shows that the fit of the SAGM(3)
models with linear components (bottom row, second column) and spline components (second
row, second column) are strikingly similar. The same holds for the LPDS in Table 3. Finally,
Figure 1 also displays the fit of the split-t model with one component. The estimation results
for this model shows that only two knots are really active in the mean function, all of the
knots in the scale, degrees of freedom and skewness have posterior probabilities smaller than
0.3. The degrees of freedom are roughly 43 for the smallest values of range and then decreases
smoothly toward 7 when range is 720. The skewness parameter λ is roughly 0.5 for all values
of range, a sizeable skewness which is also visible in Figure 1. The LPDS of the one-component
split-t model is 64.014, which is only slightly worse than SAGM(1).

4.3. Electricity expenditure data. Our second example uses a data set with electricity ex-
penditures in 1602 households from South Australia (Bartels et al.; 1996). Leslie et al. (2007)
analyze this data set and conclude that a heteroscedastic regression with errors following a
Dirichlet process mixture fits the data well. They also document that the response variable is
quite skewed. We consider both in-sample and out-of-sample performance of smooth mixture
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Figure 1. Assessing the in-sample fit of the smooth mixture models for the
LIDAR data. The figure displays the actual data overlayed on HPD predictive
regions. The solid line is the predictive mean.

models, using the data set in Leslie et al. (2007) without interactions. The thirteen covariates
used in our application are defined in Table 4

Following Leslie et al. (2007), we mean correct the covariates, but keep their original scale.
The prior means of µ and φ are set equal to the median and the standard deviation of

the response variable, respectively. This data snooping is innocent as we set the standard
deviation of µ and φ to 100, so the prior is largely non-informative. The prior mean and
standard deviation of the skewness parameter, λ are both set to unity. This means that we
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Table 4. The electricity bills regressors (subsets)

Variable name Description

log(rooms) log of the number of rooms in the house
log(income) log of the annual pretax household income in Australian dollars
log(people) log of the number of usual residents in the house
mhtgel indicator for electric main heating
sheonly indicator for electric secondary heating only
whtgel indicator for peak electric water heating
cookel indicator for electric cooking only
poolfilt indicator for pool filter
airrev indicator for reverse cycle air conditioning
aircond indicator for air conditioning
mwave indicator for microwave
dish indicator for dishwasher
dryer indicator for dryer

are centering the prior on a symmetric model, but allowing for substantial skewness a priori.
The prior mean of the degrees of freedom is set to 10 with a standard deviation of 7, which is
wide enough to include both the Cauchy and essentially the Gaussian distributions. Since the
data sample is fairly large, and we base model choice on the LPDS, the results are insensitive
to the exact choice of priors.

Table 5. Log Predictive Density Score (LPDS) from five-fold cross-validation
of the electricity expenditure data.

Model K = 1 K = 2 K = 3

SMR separate −8, 047 −8, 304 −8, 703
common – −8, 388 −8, 865

SAGM separate −8, 280 −8, 337 −8, 703
common – −8, 214 −8, 148

Split-normal separate −8, 267 −8, 247 −8, 369
common – −8, 192 −8, 174

Student’s t separate −8, 165 −8, 077 −8, 151
common – −8, 186 −8, 148

Split-t separate −8, 088 −8, 143 −8, 157
common – −8, 274 −8, 224

Gamma separate −8, 105 −8, 114 −8, 143
common – −8, 333 −8, 304

Log-normal separate −8, 168 −8, 142 −8, 291
common – −8, 087 −8, 090

The numerical standard errors of the LPDS are smaller than one for all models.

We first explore the out-of-sample performance of several smooth mixture models using five-
fold cross-validation of the LPDS. The five subsamples are chosen by sampling systematically
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from the data set. Table 5 displays the results for a handful of models. Every model is
estimated both under the assumption of separate parameters and when all parameters except
the intercepts are common across components; see Section 2.2.

Looking first at the LPDS of the one-component models, it is clear that data are skewed (the
skewed models are all doing better than SAGM), but the type of the skewness is clearly impor-
tant (gamma is doing a lot better than split-normal and log-normal). The best one-component
model is split-t, which indicates the presence of heavy-tails in additional to skewness.

The best model overall is the student-t model with two separate components, closely fol-
lowed by the log-normal model also with two separate components. It seems that this partic-
ular data set has a combination of skewness and heavy-tailedness which is better modeled by
a mixture than by a single skewed and heavy-tailed component.

One way to check the in-sample fit of the models on the full data set is look at the normalized
residuals. We define the normalized residual as Φ−1[F (yi)], where F (·) is the distribution
function from the model. If the model is correctly specified, the normalized residuals should
be an iid N(0, 1) sample. Figure 2 displays QQ-plots for the models with one to three
components. The QQ-plots should be close to the 45 degree line if the model is correctly
specified. It is clear from the first row of Figure 2 that a model with one component has to
be skewed in order to fit the data. As expected, most of the models provide a better fit as we
add components, the main exception being the split-t which deteriorates as we go from one
to two components. This may be due to the MCMC algorithm getting stuck in a local mode,
but several MCMC runs gave very similar results.

Table 6 presents estimation results from the best one-component model, the split-t model.
We choose to present results for this model as it is easy to interpret and requires no additional
identifying restrictions. Table 6 shows that many of the covariates, including log(room) and
log(people), are important in the mean function. log(income) gives a relatively low posterior
inclusion probability in the mean function, but is an important covariate in the scale, φ. The
covariate sheonly is the only important variable in the degrees of freedom function, but at
least seven covariates are very important determinants of the skewness parameter.

Figure 3 depicts the conditional predictive densities p(y|x) from three of the models: split-
t(1) (the best one-component model), student-t(2) (the best model overall) and Gamma(1)
(the most efficient model with a minimum number of potential parameters). The predictive
densities are displayed for three different conditioning values of the most important covariates:
log(rooms), log(income), sheonly and whtgel. All other covariates except the one indicated
below the horizontal axis are fixed at their sample means. It is clear from Figure 3 that the
predictive densities are very skewed, but also that the different models tend to produce very
different types of skewness. The predictive densities from the 2-component student-t model
are unimodal except for median and high values of whtgel where the two components are
clearly visible.

5. Conclusions

We have presented a general model class for estimating the distribution of a continuous
variable conditional on a set of covariates. The models are finite smooth mixtures of com-
ponent densities where the mixture weights and all component parameters are functions of
covariates. The inference methodology is a fully unified Bayesian approach based on a gen-
eral and efficient MCMC algorithm. Easily specified priors are used and Bayesian variable
selection is carried out to obtain model parsimony and guard against over-fitting. We use the
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Figure 2. Quantiles plots of the normalized residuals resulting from SAGM
and split-normal (first column); student’s t and split-t (second column);
gamma and log-normal (third column) with one to three separate components
respectively. If the model is correct, the normalized residuals should be on the
dotted reference line.

log predictive density score to determine the number of mixture components. Simulation and
real examples show that using fairly complex components in the mixture is a wise strategy
and that variable selection is an efficient approach to guard against over-fitting.
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Table 6. Posterior means and inclusion probabilities in the one-component
split-t model for the electricity expenditure data.

Variable βµ Iµ βφ Iφ βν Iν βλ Iλ
Intercept 256.62 – 3.82 – 2.83 – 1.34 –
log(rooms) 49.47 0.90 −0.65 0.43 −0.05 0.04 0.97 1.00
log(income) 2.71 0.48 −0.36 1.00 −0.05 0.02 0.55 1.00
log(people) 40.62 1.00 −0.20 0.22 0.06 0.03 0.34 1.00
mhtgel 27.28 1.00 0.07 0.12 −0.18 0.03 0.13 0.15
sheonly 10.11 0.72 0.01 0.04 2.10 0.99 0.04 0.05
whtgel 17.74 0.68 −0.23 0.18 0.33 0.04 0.82 0.99
cookel 27.80 0.99 −0.19 0.14 0.01 0.04 0.39 1.00
poolfilt −6.50 0.50 −0.11 0.23 1.62 0.07 0.32 0.76
airrev 14.06 0.91 0.06 0.07 −0.03 0.03 0.12 0.16
aircond 5.58 0.46 0.03 0.11 0.01 0.03 0.29 0.96
mwave 8.08 0.75 −0.38 0.49 −0.39 0.05 0.43 0.49
dish 12.96 0.66 0.08 0.05 1.16 0.04 0.11 0.07
dryer 19.64 0.99 0.06 0.12 −0.29 0.05 0.20 0.90
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Appendix A. Implementation details for the gamma and log-normal models

The general MCMC algorithm documented in Section 3 only requires the gradient and
Hessian matrix of the conditional posteriors for each of the parameters in the components
densities. The gradient and Hessian for the split-t model is documented in Li et al. (2010).
We now present the gradient and Hessian for the gamma model and log-normal model for
completeness.

(1) Gradient and Hessian wrt µ and φ for the gamma density.

∂ ln p (y|µ, φ)
∂µ

=
1

φ

(
µ+ 2µ log

(
yµ

φ

)
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∂φ

=
µ

φ2

(
y − µ− µ log

(
yµ

φ

)
+ µψ

(
µ2

φ

))

∂2 ln p (y|µ, φ)
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)

where ψ(·) and ψ1(·) are the digamma function and trigamma function respectively.
(2) Gradient and Hessian wrt µ and φ for the log-normal density.

It is convenient to define h = log (y/µ) and l = log
(
1 + φ2/µ2

)
.

∂ ln p (y|µ, φ)
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)
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µ (µ2 + φ2) l
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2µ2 + 3φ2
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Figure 3. Conditional predictive densities for different values of the most
important covariates. All other covariates are held fixed at their mean.
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∂2 ln p (y|µ, φ)
∂µ2

=

(
µ4 + 5µ2φ2 + 2φ4 +

(
µ2 + φ2

)2
h
)
l2 + 4φ4h2

µ2 (µ2 + φ2)2 l3

− φ2
((
3h2 + 4h

)
µ2 +

(
2 + 4h+ h2

)
φ2
)

µ2 (µ2 + φ2)2 l2

∂2 ln p (y|µ, φ)
∂φ2

=
4φ2h2

(µ2 + φ2)2 l3
− 2φ2 +

(
µ2 − φ2

)
h2

(µ2 + φ2)2 l2
+

µ2 − φ2

(µ2 + φ2)2
(
1 + l−1

)
.

References

Bartels, R., Fiebig, D. and Plumb, M. (1996). Gas or electricity, which is cheaper? An
econometric approach with application to Australian expenditure data, The Energy Journal
17(4): 33–58.

Celeux, G., Hurn, M. and Robert, C. (2000). Computational and inferential difficul-
ties with mixture posterior distributions, Journal of the American Statistical Association
95(451): 957–970.

Denison, D., Holmes, C., Mallick, B. and Smith, A. (2002). Bayesian methods for nonlinear
classification and regression, Wiley, New York.

Diebolt, J. and Robert, C. (1994). Estimation of finite mixture distributions through Bayesian
sampling, Journal of the Royal Statistical Society. Series B (Methodological) 56(2): 363–375.

Escobar, M. andWest, M. (1995). Bayesian Density Estimation and Inference Using Mixtures.,
Journal of the American Statistical Association 90(430).
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