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Mixture distributions

For a given x, a mixture distribution p(y|x) is a finite mixture

K
∑

k=1

ωkfk (yi|θk) , i = 1, ..., n.

Latent variable formulation for MCMC

Pr (si = k) = ωk

yi| (si = k) ∼ fk (yi|θi)

Two-block Gibbs sampler

◮ Sample s = (s1, ..., sn) conditional on (θ1, ..., θk).
◮ Sample each θk conditional on the allocation s.

A smooth mixture model is a finite mixture density with weights that are
smooth function of the covariates, e.g

ωk (x) =
exp (x′γk)

∑K
r=1 exp (x′γr)
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ME, SMR and SAGM models

Mixture-of-Experts (ME) (Jacobs et al. (1991))
◮ A mixture of regressions where the mixing probabilities are functions of

covariates.
◮ Flexibly model the mean regression and frequently used in the machine

learning literature.
◮ The components are often linear homoscedastic regressions or even

constant functions.
◮ simple-and-many approach.

Smoothly Mixing Regression (SMR) (Geweke & Keane (2007))
◮ A generalization of the ME model for regression density estimation
◮ Fail to fit heteroscedastic data even with a very large number of

components

Smooth Adaptive Gaussian Mixtures (SAGM) (Villani et al. (2008))
◮ A smooth finite mixture of Gaussian densities with the mixing

probabilities.
◮ The mixing probabilities, the components means and components

variances modeled as functions of the covariates.
◮ Bayesian variable selection are in all three sets of covariates.
◮ complex-but-few approach — Enough flexibility is used within the mixture

components so that the number of components can be kept to a minimum.
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Smooth mixture of asymmetric student’s t densities
The model

The split-t density is

c · κ (µ, φ, v) I (y ≤ µ) + c · κ (µ, λφ, v) I (y > µ) ,

where κ (µ, φ, v) =

(

v

v+
(y−µ)2

φ2

)(v+1)/2

is the kernel of student t density

and c is the normalization constant.
Each of the four parameters µ, φ, λ and ν are connected to covariates as

µ = βµ0 + x′tβµ

lnφ = βφ0 + x′tβφ

lnλ = βλ0 + x′tβλ

ln v = βv0 + x′tβv

but any smooth link function can equally well be used in the MCMC
methodology.
This make it possible e.g. to have the degrees of freedom smoothly
varying over covariate space; to capture skewness and excess kurtosis with
the components.
Common components if βµ = βφ = βλ = βv, else separate components.
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Figure: Graphical display of the split-t density with location parameter µ = 0 and scale
parameter λ = 1.8.



Smooth mixture of asymmetric student’s t densities
Discussion — Why not over-fit?

The prior
◮ We use an easy specified prior, β|I ∼ N(0, τ 2

βI), where I is the covariate
indicators.

◮ We investigate the sensitivity of the posterior inferences and model
comparison with respect to τβ.

◮ One can use the g-prior β ∼ N(0, τ 2
β(X ′X)−1) (Zellner, 1986) which is less

appealing in a mixture context.

Variable selection (details in next page)
◮ Investigate the importance of covariates.
◮ More efficient.

Automatically add components to make each component simpler.

Evaluating the out-of-sample log predictive density score(LPDS) – details
in “model comparison” .
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Smooth mixture of asymmetric student’s t densities
Inference — Finite Newton Proposals

In a general regression model, the likelihood function is
p (y|β) =

∏n
i=1 p (yi|φi) where k (φi) = x′iβ (link function).

We need first two derivatives of ln p(yi|φi) with respect to φi.

We do Bayesian variable selection within MCMC.
◮ Set up variable selection indicator I = (I1, ..., In) where Ii = 1 indicates Xi

are in the model and Ii = 0 means βi = 0.
◮ Sample β and I by using finite-step Newton’s method. We only iterate a

few steps(≤3).
◮ Dimension might change here. But exploits that k(φi) = x′iβ always has

the same dimension (Villani et at. 2008).
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Smooth mixture of asymmetric student’s t densities
Model comparison

Why not marginal likelihood?

◮ The key quantity is Bayesian model comparison is the marginal likelihood.
◮ The marginal likelihood is sensitive to the choice of prior, which is

especially true when the prior is not very informative (Kass, 1993).

We use B-fold cross-validation of the log predictive density score(LPDS)

◮ B−1
B
∑

b=1

ln p (ỹb|ỹ−b, x)

◮ Compute the LPDS for ME, SMR, SAGM and our split model with
different components.

◮ Compare the differences of LPDS.
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Application to daily S&P 500 returns
The data

Response variable: Daily returns from S&P 500 index.

Covariates
◮ LastDay, LastWeek, LastMonth, Moving average of returns from the

previous one, five and 20 trading days respectively.
◮ CloseAbs80, CloseAbs95, Geometrically declining average of past

returns (1− ϕ)
∑

∞

s=0
ϕs|yt−2−s| with ϕ of .80 and .95 respectively.

◮ CloseSqr80, CloseSqr95, The square root of (1− ϕ)
∑

∞

s=0
ϕsy2

t−2−s

with ϕ of .80 and .95 respectively.
◮ MaxMin80, Maxmin95, Information of volatility –

(1− ϕ)
∑

∞

s=0
ϕs
(

ln p
(h)
t−1−s − ln p

(l)
t−1−s

)

with ϕ of .80 and .95 respectively.

The models are estimated using 4646 trading days from 1990-Jan-01 to
2008-May-29(before finical crisis).

The models are evaluated out-of-sample on the 199 trading days from
2008-May-30 to 2009-Mar-13(finical crisis period).
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Figure: Time series plot of Return(up-left) and scatter plots of Return against a
covariate(others) for S&P500 (1990-Jan-01 – 2009-Mar-13).



Application to daily S&P 500 returns
Results

A normalized residuals is defined as Φ−1(F (yt)), where F (yt) is the
cumulative predictive distribution. If the model is correct, the normalized
residuals should be iid N(0, 1).

The LPDS is reported for different models.

Posterior summary of the one-component split-t model
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Figure: The 199 normalized residuals in the evaluation sample over time and the 99%
probability intervals under the N(0, 1).



Model K = 1 K = 2 K = 3 K = 4 K = 5 Max n.s.e.

SMR −1044.78 −638.89 −505.74 −487.11 −489.19 0.98 (3)
+ Skew −540.91 −525.07 −513.85 −506.68 −506.13 0.82 (2)
+ DF −544.00 −518.71 −498.93 −500.14 −494.29 0.89 (1)
+ Skew + DF −530.86 −504.63 −498.03 −498.83 −496.87 0.88 (5)

SAGM Common −477.73 −473.10 −473.12 −470.30 −472.86 0.26 (2)
+ Skew −474.18 −467.29 −468.75 −467.93 −467.22 0.35 (4)
+ DF −474.74 −472.92 −470.51 −469.40 −468.87 0.34 (4)
+ Skew + DF −472.37 −468.92 −469.30 −466.21 −465.86 0.53 (4)

SAGM Separate −469.21 −469.50 −470.53 −471.02 0.49 (3)
+ Skew −468.48 −466.93 −467.48 −468.02 0.58 (4)
+ DF −469.08 −469.24 −462.03 −467.78 0.72 (5)
+ Skew + DF −466.84 −462.56 −462.47 −474.58 0.74 (5)

GARCH(1,1) −479.03
t-GARCH(1,1) −477.39

Table: Evaluating the out-of-sample log predictive density score (LPDS)



Parameters Mean Stdev Post.Incl. IF

Location µ

Const 0.084 0.019 – 9.919

Scale φ

Const 0.402 0.035 – 7.125
LastDay -0.190 0.120 0.036 0.903
LastWeek -0.738 0.193 0.985 18.519
LastMonth -0.444 0.086 0.999 4.133
CloseAbs95 0.194 0.233 0.035 1.445
CloseSqr95 0.107 0.226 0.023 2.715
MaxMin95 1.124 0.086 1.000 6.012
CloseAbs80 0.097 0.153 0.013 –
CloseSqr80 0.143 0.143 0.021 –
MaxMin80 -0.022 0.200 0.017 –

Degrees of freedom ν

Const 2.482 0.238 – 5.708
LastDay 0.504 0.997 0.112 2.899
LastWeek -2.158 0.926 0.638 5.463
LastMonth 0.307 0.833 0.089 5.560
CloseAbs95 0.718 1.437 0.229 3.020
CloseSqr95 1.350 1.280 0.279 2.758
MaxMin95 1.130 1.488 0.222 6.564
CloseAbs80 0.035 1.205 0.101 2.789
CloseSqr80 0.363 1.211 0.112 3.330
MaxMin80 -1.672 1.172 0.254 4.178

Skewness λ

Const -0.104 0.033 – 10.423
LastDay -0.159 0.140 0.027 1.170
LastWeek -0.341 0.170 0.135 8.909
LastMonth -0.076 0.112 0.016 –
CloseAbs95 -0.021 0.096 0.008 –
CloseSqr95 -0.003 0.108 0.006 –
MaxMin95 0.016 0.075 0.008 –
CloseAbs80 0.060 0.115 0.009 –
CloseSqr80 0.059 0.111 0.010 –
MaxMin80 0.093 0.096 0.013 –

Table: Posterior summary of the one-component split-t model
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Figure: Time series plot of the posterior median and 95% probability intervals for some
moments of the return distribution. The posterior distribution is based on the full sample
up to March 13, 2009.



Thank you!


