
Chapter 9

The Generalized

Method of Moments

9.1 Introduction

The models we have considered in earlier chapters have all been regression
models of one sort or another. In this chapter and the next, we introduce
more general types of models, along with a general method for performing
estimation and inference on them. This technique is called the generalized
method of moments, or GMM, and it includes as special cases all the methods
we have so far developed for regression models.

As we explained in Section 3.1, a model is represented by a set of DGPs.
Each DGP in the model is characterized by a parameter vector, which we
will normally denote by β in the case of regression functions and by θ in the
general case. The starting point for GMM estimation is to specify functions,
which, for any DGP in the model, depend both on the data generated by that
DGP and on the model parameters. When these functions are evaluated at
the parameters that correspond to the DGP that generated the data, their
expectation must be zero.

As a simple example, consider the linear regression model yt = Xtβ + ut.
An important part of the model specification is that the error terms have
mean zero. These error terms are unobservable, because the parameters β
of the regression function are unknown. But we can define the residuals
ut(β) ≡ yt −Xtβ as functions of the observed data and the unknown model
parameters, and these functions provide what we need for GMM estimation.
If the residuals are evaluated at the parameter vector β0 associated with the
true DGP, they have mean zero under that DGP, but if they are evaluated at
some β 6= β0, they do not have mean zero. In Chapter 1, we used this fact
to develop a method-of-moments (MM) estimator for the parameter vector β
of the regression function. As we will see in the next section, the various
GMM estimators of β include as a special case the MM (or OLS) estimator
developed in Chapter 1.

In Chapter 6, when we dealt with nonlinear regression models, and again in
Chapter 8, we used instrumental variables along with residuals in order to
develop MM estimators. The use of instrumental variables is also an essential
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9.2 GMM Estimators for Linear Regression Models 353

aspect of GMM, and in this chapter we will once again make use of the various
kinds of optimal instruments that were useful in Chapters 6 and 8 in order
to develop a wide variety of estimators that are asymptotically efficient for a
wide variety of models.

We begin by considering, in the next section, a linear regression model with
endogenous explanatory variables and an error covariance matrix that is not
proportional to the identity matrix. Such a model requires us to combine
the insights of both Chapters 7 and 8 in order to obtain asymptotically effi-
cient estimates. In the process of doing so, we will see how GMM estimation
works more generally, and we will be led to develop ways to estimate models
with both heteroskedasticity and serial correlation of unknown form. In Sec-
tion 9.3, we study in some detail the heteroskedasticity and autocorrelation
consistent, or HAC, covariance matrix estimators that we briefly mentioned
in Section 5.5. Then, in Section 9.4, we introduce a set of tests, based on
GMM criterion functions, that are widely used for inference in conjunction
with GMM estimation. In Section 9.5, we move beyond regression models
to give a more formal and advanced presentation of GMM, and we postpone
to this section most of the proofs of consistency, asymptotic normality, and
asymptotic efficiency for GMM estimators. In Section 9.6, which depends
heavily on the more advanced treatment of the preceding section, we consider
the Method of Simulated Moments, or MSM. This method allows us to obtain
GMM estimates by simulation even when we cannot analytically evaluate the
functions that play the same role as residuals for a regression model.

9.2 GMM Estimators for Linear Regression Models

Consider the linear regression model

y = Xβ + u, E(uu>) = Ω, (9.01)

where there are n observations, and Ω is an n × n covariance matrix. As in
the previous chapter, some of the explanatory variables that form the n× k
matrix X may not be predetermined with respect to the error terms u. How-
ever, there is assumed to exist an n× l matrix of predetermined instrumental
variables, W, with n > l and l ≥ k, satisfying the condition E(ut |Wt) = 0 for
each row Wt of W, t = 1, . . . , n. Any column of X that is predetermined must
also be a column of W. In addition, we assume that, for all t, s = 1, . . . , n,
E(utus |Wt, Ws) = ωts, where ωts is the tsth element of Ω. We will need this
assumption later, because it allows us to see that

Var(n−1/2W>u) = 1−
n

E(W>uu>W ) = 1−
n

n∑
t=1

n∑
s=1

E(utusWt
>Ws)

= 1−
n

n∑
t=1

n∑
s=1

E
(
E(utusWt

>Ws |Wt, Ws)
)

Copyright c© 2003, Russell Davidson and James G. MacKinnon



354 The Generalized Method of Moments

= 1−
n

n∑
t=1

n∑
s=1

E(ωtsWt
>Ws) = 1−

n
E(W>ΩW ). (9.02)

The assumption that E(ut |Wt) = 0 implies that, for all t = 1, . . . , n,

E
(
Wt

>(yt −Xtβ)
)

= 0. (9.03)

These equations form a set of what we may call theoretical moment conditions.
They were used in Chapter 8 as the starting point for MM estimation of the
regression model (9.01). Each theoretical moment condition corresponds to a
sample moment, or empirical moment, of the form

1−
n

n∑
t=1

w>ti (yt −Xtβ) = 1−
n

wi
>(y −Xβ), (9.04)

where wi, i = 1, . . . , l, is the ith column of W, and wti is the tith element.
When l = k, we can set these sample moments equal to zero and solve the
resulting k equations to obtain the simple IV estimator (8.12). When l > k, we
must do as we did in Chapter 8 and select k independent linear combinations
of the sample moments (9.04) in order to obtain an estimator.

Now let J be an l × k matrix with full column rank k, and consider the
MM estimator obtained by using the k columns of WJ as instruments. This
estimator solves the k equations

J>W>(y −Xβ) = 0, (9.05)

which are referred to as sample moment conditions, or just moment conditions
when there is no ambiguity. They are also sometimes called orthogonality
conditions, since they require that the vector of residuals should be orthogonal
to the columns of WJ. Let us assume that the data are generated by a DGP
which belongs to the model (9.01), with coefficient vector β0 and covariance
matrix Ω0. Under this assumption, we have the following explicit expression,
suitable for asymptotic analysis, for the estimator β̂ that solves (9.05):

n1/2(β̂ − β0) =
(
n−1J>W>X

)−1
n−1/2J>W>u. (9.06)

From this, recalling (9.02), we find that the asymptotic covariance matrix
of β̂, that is, the covariance matrix of the plim of n1/2(β̂ − β0), is

(
plim
n→∞

1−
n

J>W>X
)−1(

plim
n→∞

1−
n

J>W>Ω0WJ
)(

plim
n→∞

1−
n
X>WJ

)−1

. (9.07)

This matrix has the familiar sandwich form that we expect to see when an
estimator is not asymptotically efficient.
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9.2 GMM Estimators for Linear Regression Models 355

The next step, as in Section 8.3, is to choose J so as to minimize the covariance
matrix (9.07). We may reasonably expect that, with such a choice of J, the
covariance matrix would no longer have the form of a sandwich. The simplest
choice of J that eliminates the sandwich in (9.07) is

J = (W>Ω0W )−1W>X; (9.08)

notice that, in the special case in which Ω0 is proportional to I, this expres-
sion reduces to the result (8.24) that we found in Section 8.3 as the solution
for that special case. We can see, therefore, that (9.08) is the appropriate
generalization of (8.24) when Ω is not proportional to an identity matrix.
With J defined by (9.08), the covariance matrix (9.07) becomes

plim
n→∞

(
1−
n

X>W (W>Ω0W )−1W>X
)−1

, (9.09)

and the efficient GMM estimator is

β̂GMM =
(
X>W (W>Ω0W )−1W>X

)−1
X>W (W>Ω0W )−1W>y. (9.10)

When Ω0 = σ2I, this estimator reduces to the generalized IV estimator (8.29).
In Exercise 9.1, readers are invited to show that the difference between the
covariance matrices (9.07) and (9.09) is a positive semidefinite matrix, thereby
confirming (9.08) as the optimal choice for J.

The GMM Criterion Function

With both GLS and IV estimation, we showed that the efficient estimators
could also be derived by minimizing an appropriate criterion function; this
function was (7.06) for GLS and (8.30) for IV. Similarly, the efficient GMM
estimator (9.10) minimizes the GMM criterion function

Q(β, y) ≡ (y −Xβ)>W (W>Ω0W )−1W>(y −Xβ), (9.11)

as can be seen at once by noting that the first-order conditions for minimiz-
ing (9.11) are

X>W (W>Ω0W )−1W>(y −Xβ) = 0.

If Ω0 = σ2
0I, (9.11) reduces to the IV criterion function (8.30), divided by σ2

0 .
In Section 8.6, we saw that the minimized value of the IV criterion func-
tion, divided by an estimate of σ2, serves as the statistic for the Sargan test
for overidentification. We will see in Section 9.4 that the GMM criterion
function (9.11), with the usually unknown matrix Ω0 replaced by a suitable
estimate, can also be used as a test statistic for overidentification.

The criterion function (9.11) is a quadratic form in the vector W>(y−Xβ) of
sample moments and the inverse of the matrix W>Ω0W. Equivalently, it is a
quadratic form in n−1/2W>(y −Xβ) and the inverse of n−1W>Ω0W, since
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356 The Generalized Method of Moments

the powers of n cancel. Under the sort of regularity conditions we have used
in earlier chapters, n−1/2W>(y −Xβ0) satisfies a central limit theorem, and
so tends, as n → ∞, to a normal random variable, with mean vector 0 and
covariance matrix the limit of n−1W>Ω0W. It follows that (9.11) evaluated
using the true β0 and the true Ω0 is asymptotically distributed as χ2 with
l degrees of freedom; recall Theorem 4.1, and see Exercise 9.2.

This property of the GMM criterion function is simply a consequence of its
structure as a quadratic form in the sample moments used for estimation and
the inverse of the asymptotic covariance matrix of these moments evaluated
at the true parameters. As we will see in Section 9.4, this property is what
makes the GMM criterion function useful for testing. The argument leading
to (9.10) shows that this same property of the GMM criterion function leads
to the asymptotic efficiency of the estimator that minimizes it.

Provided the instruments are predetermined, so that they satisfy the condition
that E(ut |Wt) = 0, we still obtain a consistent estimator, even when the
matrix J used to select linear combinations of the instruments is different
from (9.08). Such a consistent, but in general inefficient, estimator can also
be obtained by minimizing a quadratic criterion function of the form

(y −Xβ)>WΛW>(y −Xβ), (9.12)

where the weighting matrix Λ is l × l, positive definite, and must be at least
asymptotically nonrandom. Without loss of generality, Λ can be taken to be
symmetric; see Exercise 9.3. The inefficient GMM estimator is

β̂ = (X>WΛW>X)−1X>WΛW>y, (9.13)

from which it can be seen that the use of the weighting matrix Λ corresponds
to the implicit choice J = ΛW>X. For a given choice of J, there are various
possible choices of Λ that give rise to the same estimator; see Exercise 9.4.

When l = k, the model is exactly identified, and J is a nonsingular square
matrix which has no effect on the estimator. This is most easily seen by
looking at the moment conditions (9.05), which are equivalent, when l = k, to
those obtained by premultiplying them by (J>)−1. Similarly, if the estimator
is defined by minimizing a quadratic form, it does not depend on the choice
of Λ whenever l = k. To see this, consider the first-order conditions for
minimizing (9.12), which, up to a scalar factor, are

X>WΛW>(y −Xβ) = 0.

If l = k, X>W is a square matrix, and the first-order conditions can be
premultiplied by Λ−1(X>W )−1. Therefore, the estimator is the solution to
the equations W>(y − Xβ) = 0, independently of Λ. This solution is just
the simple IV estimator defined in (8.12).
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9.2 GMM Estimators for Linear Regression Models 357

When l > k, the model is overidentified, and the estimator (9.13) depends
on the choice of J or Λ. The efficient GMM estimator, for a given set of
instruments, is defined in terms of the true covariance matrix Ω0, which is
usually unknown. If Ω0 is known up to a scalar multiplicative factor, so
that Ω0 = σ2∆0, with σ2 unknown and ∆0 known, then ∆0 can be used in
place of Ω0 in either (9.10) or (9.11). This is true because multiplying Ω0

by a scalar leaves (9.10) invariant, and it also leaves invariant the β that
minimizes (9.11).

GMM Estimation with Heteroskedasticity of Unknown Form

The assumption that Ω0 is known, even up to a scalar factor, is often too
strong. What makes GMM estimation practical more generally is that, in
both (9.10) and (9.11), Ω0 appears only through the l × l matrix product
W>Ω0W. As we saw first in Section 5.5, in the context of heteroskedasticity
consistent covariance matrix estimation, n−1 times such a matrix can be esti-
mated consistently if Ω0 is a diagonal matrix. What is needed is a preliminary
consistent estimate of the parameter vector β, which furnishes residuals that
are consistent estimates of the error terms.

The preliminary estimates of β must be consistent, but they need not be
asymptotically efficient, and so we can obtain them by using any convenient
choice of J or Λ. One choice that is often convenient is Λ = (W>W )−1,
in which case the preliminary estimator is the generalized IV estimator
(8.29). We then use the preliminary estimates β̂ to calculate the residuals
ût ≡ yt −Xβ̂. A typical element of the matrix n−1W>Ω0W can then be
estimated by

1−
n

n∑
t=1

û2
t wtiwtj . (9.14)

This estimator is very similar to (5.36), and the estimator (9.14) can be proved
to be consistent by using arguments just like those employed in Section 5.5.

The matrix with typical element (9.14) can be written as n−1W>Ω̂W, where
Ω̂ is an n × n diagonal matrix with typical diagonal element û2

t . Then the
feasible efficient GMM estimator is

β̂FGMM =
(
X>W (W>Ω̂W )−1W>X

)−1
X>W (W>Ω̂W )−1W>y, (9.15)

which is just (9.10) with Ω0 replaced by Ω̂. Since n−1W>Ω̂W consistently
estimates n−1W>Ω0W, it follows that β̂FGMM is asymptotically equivalent
to (9.10). It should be noted that, in calling (9.15) efficient, we mean that
it is asymptotically efficient within the class of estimators that use the given
instrument set W.

Like other procedures that start from a preliminary estimate, this one can be
iterated. The GMM residuals yt −Xβ̂FGMM can be used to calculate a new
estimate of Ω, which can then be used to obtain second-round GMM esti-
mates, which can then be used to calculate yet another estimate of Ω, and so
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358 The Generalized Method of Moments

on. This iterative procedure was investigated by Hansen, Heaton, and Yaron
(1996), who called it continuously updated GMM. Whether we stop after one
round or continue until the procedure converges, the estimates have the same
asymptotic distribution if the model is correctly specified. However, there is
evidence that performing more iterations improves finite-sample performance.
In practice, the covariance matrix is estimated by

V̂ar(β̂FGMM) =
(
X>W (W>Ω̂W )−1W>X

)−1
. (9.16)

It is not hard to see that n times the estimator (9.16) tends to the asymptotic
covariance matrix (9.09) as n →∞.

Fully Efficient GMM Estimation

In choosing to use a particular matrix of instrumental variables W, we are
choosing a particular representation of the information sets Ωt appropriate
for each observation in the sample. It is required that Wt ∈ Ωt for all t,
and it follows from this that any deterministic function, linear or nonlinear,
of the elements of Wt also belongs to Ωt. It is quite clearly impossible to
use all such deterministic functions as actual instrumental variables, and so
the econometrician must make a choice. What we have established so far is
that, once the choice of W is made, (9.08) gives the optimal set of linear
combinations of the columns of W to use for estimation. What remains to be
seen is how best to choose W out of all the possible valid instruments, given
the information sets Ωt.

In Section 8.3, we saw that, for the model (9.01) with Ω = σ2I, the best
choice, by the criterion of the asymptotic covariance matrix, is the matrix X̄
given in (8.18) by the defining condition that E(Xt |Ωt) = X̄t, where Xt and
X̄t are the tth rows of X and X̄, respectively. However, it is easy to see that
this result does not hold unmodified when Ω is not proportional to an identity
matrix. Consider the GMM estimator (9.10), of which (9.15) is the feasible
version, in the special case of exogenous explanatory variables, for which the
obvious choice of instruments is W = X. If, for notational ease, we write Ω
for the true covariance matrix Ω0, (9.10) becomes

β̂GMM =
(
X>X(X>ΩX)−1X>X

)−1
X>X(X>ΩX)−1X>y

= (X>X)−1X>ΩX(X>X)−1X>X(X>ΩX)−1X>y

= (X>X)−1X>ΩX(X>ΩX)−1X>y

= (X>X)−1X>y = β̂OLS.

However, we know from the results of Section 7.2 that the efficient estimator
is actually the GLS estimator

β̂GLS = (X>Ω−1X)−1X>Ω−1y, (9.17)

which, except in special cases, is different from β̂OLS.
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9.2 GMM Estimators for Linear Regression Models 359

The GLS estimator (9.17) can be interpreted as an IV estimator, in which
the instruments are the columns of Ω−1X. Thus it appears that, when Ω is
not a multiple of the identity matrix, the optimal instruments are no longer
the explanatory variables X, but rather the columns of Ω−1X. This suggests
that, when at least some of the explanatory variables in the matrix X are
not predetermined, the optimal choice of instruments is given by Ω−1X̄. This
choice combines the result of Chapter 7 about the optimality of the GLS es-
timator with that of Chapter 8 about the best instruments to use in place of
explanatory variables that are not predetermined. It leads to the theoretical
moment conditions

E
(
X̄>Ω−1(y −Xβ)

)
= 0. (9.18)

Unfortunately, this solution to the optimal instruments problem does not
always work, because the moment conditions in (9.18) may not be correct. To
see why not, suppose that the error terms are serially correlated, and that Ω
is consequently not a diagonal matrix. The ith element of the matrix product
in (9.18) can be expanded as

n∑
t=1

n∑
s=1

X̄ti ωts(ys −Xsβ), (9.19)

where ωts is the tsth element of Ω−1. If we evaluate at the true parameter
vector β0, we find that ys − Xsβ0 = us. But, unless the columns of the
matrix X̄ are exogenous, it is not in general the case that E(us | X̄t) = 0 for
s 6= t, and, if this condition is not satisfied, the expectation of (9.19) is not
zero in general. This issue was discussed at the end of Section 7.3, and in
more detail in Section 7.8, in connection with the use of GLS when one of the
explanatory variables is a lagged dependent variable.

Choosing Valid Instruments

As in Section 7.2, we can construct an n × n matrix Ψ, usually triangular,
that satisfies the equation Ω−1 = Ψ Ψ>. As in equation (7.03) of Section 7.2,
we can premultiply regression (9.01) by Ψ> to get

Ψ>y = Ψ>Xβ + Ψ>u, (9.20)

with the result that the covariance matrix of the transformed error vector,
Ψ>u, is just the identity matrix. Suppose that we propose to use a matrix Z
of instruments in order to estimate the transformed model, so that we are led
to consider the theoretical moment conditions

E
(
Z>Ψ>(y −Xβ)

)
= 0. (9.21)

If these conditions are to be correct, then what we need is that, for each t,
E

(
(Ψ>u)t |Zt

)
= 0, where the subscript t is used to select the tth row of the

corresponding vector or matrix.
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360 The Generalized Method of Moments

If X is exogenous, the optimal instruments are given by the matrix Ω−1X, and
the moment conditions for efficient estimation are E

(
X>Ω−1(y −Xβ)

)
= 0,

which can also be written as

E
(
X>Ψ Ψ>(y −Xβ)

)
= 0. (9.22)

Comparison with (9.21) shows that the optimal choice of Z is Ψ>X. Even if
X is not exogenous, (9.22) is a correct set of moment conditions if

E
(
(Ψ>u)t | (Ψ>X)t

)
= 0. (9.23)

But this is not true in general when X is not exogenous. Consequently, we
seek a new definition for X̄, such that (9.23) becomes true when X is replaced
by X̄.

In most cases, it is possible to choose Ψ so that (Ψ>u)t is an innovation in
the sense of Section 4.5, that is, so that E

(
(Ψ>u)t |Ωt

)
= 0. As an example,

see the analysis of models with AR(1) errors in Section 7.8, especially the
discussion surrounding (7.58). What is then required for condition (9.23) is
that (Ψ>X̄)t should be predetermined in period t. If Ω is diagonal, and so
also Ψ, the old definition of X̄ works, because (Ψ>X̄)t = ΨttX̄t, where Ψtt

is the tth diagonal element of Ψ, and this belongs to Ωt by construction. If
Ω contains off-diagonal elements, however, the old definition of X̄ no longer
works in general. Since what we need is that (Ψ>X̄)t should belong to Ωt, we
instead define X̄ implicitly by the equation

E
(
(Ψ>X)t |Ωt

)
= (Ψ>X̄)t. (9.24)

This implicit definition must be implemented on a case-by-case basis. One
example is given in Exercise 9.5.

By setting Z = Ψ>X̄, we find that the moment conditions (9.21) become

E
(
X̄>Ψ Ψ>(y −Xβ)

)
= E

(
X̄>Ω−1(y −Xβ)

)
= 0. (9.25)

These conditions do indeed use Ω−1X̄ as instruments, albeit with a possibly
redefined X̄. The estimator based on (9.25) is

β̂EGMM ≡ (X̄>Ω−1X̄)−1X̄>Ω−1y, (9.26)

where EGMM denotes “efficient GMM.” The asymptotic covariance matrix
of (9.26) can be computed using (9.09), in which, on the basis of (9.25), we
see that W is to be replaced by Ψ>X̄, X by Ψ>X, and Ω by I. We cannot
apply (9.09) directly with instruments Ω−1X̄, because there is no reason to
suppose that the result (9.02) holds for the untransformed error terms u and
the instruments Ω−1X̄. The result is

plim
n→∞

(
1−
n

X>Ω−1X̄
(

1−
n

X̄>Ω−1X̄
)−1

1−
n

X̄>Ω−1X

)−1

. (9.27)
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By exactly the same argument as that used in (8.20), we find that, for any
matrix Z that satisfies Zt ∈ Ωt,

plim
n→∞

1−
n

Z>Ψ>X = plim
n→∞

1−
n

Z>Ψ>X̄. (9.28)

Since (Ψ>X)t ∈ Ωt, this implies that

plim
n→∞

1−
n

X̄>Ω−1X = plim
n→∞

1−
n

X̄>Ψ Ψ>X

= plim
n→∞

1−
n

X̄>Ψ Ψ>X̄ = plim
n→∞

1−
n

X̄>Ω−1X̄.

Therefore, the asymptotic covariance matrix (9.27) simplifies to

plim
n→∞

(
1−
n

X̄>Ω−1X̄
)−1

. (9.29)

Although the matrix (9.09) is less of a sandwich than (9.07), the matrix (9.29)
is still less of one than (9.09). This is a clear indication of the fact that the
instruments Ω−1X̄, which yield the estimator β̂EGMM, are indeed optimal.
Readers are asked to check this formally in Exercise 9.7.

In most cases, X̄ is not observed, but it can often be estimated consistently.
The usual state of affairs is that we have an n× l matrix W of instruments,
such that S(X̄) ⊆ S(W ) and

(Ψ>W )t ∈ Ωt. (9.30)

This last condition is the form taken by the predeterminedness condition
when Ω is not proportional to the identity matrix. The theoretical moment
conditions used for (overidentified) estimation are then

E
(
W>Ω−1(y −Xβ)

)
= E

(
W>Ψ Ψ>(y −Xβ)

)
= 0, (9.31)

from which it can be seen that what we are in fact doing is estimating the
transformed model (9.20) using the transformed instruments Ψ>W. The re-
sult of Exercise 9.8 shows that, if indeed S(X̄) ⊆ S(W ), the asymptotic covar-
iance matrix of the resulting estimator is still (9.29). Exercise 9.9 investigates
what happens if this condition is not satisfied.

The main obstacle to the use of the efficient estimator β̂EGMM is thus not the
difficulty of estimating X̄, but rather the fact that Ω is usually not known.
As with the GLS estimators we studied in Chapter 7, β̂EGMM cannot be
calculated unless we either know Ω or can estimate it consistently, usually
by knowing the form of Ω as a function of parameters that can be estimated
consistently. But whenever there is heteroskedasticity or serial correlation of
unknown form, this is impossible. The best we can then do, asymptotically,
is to use the feasible efficient GMM estimator (9.15). Therefore, when we
later refer to GMM estimators without further qualification, we will normally
mean feasible efficient ones.
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362 The Generalized Method of Moments

9.3 HAC Covariance Matrix Estimation

Up to this point, we have seen how to obtain feasible efficient GMM estimates
only when the matrix Ω is known to be diagonal, in which case we can use
the estimator (9.15). In this section, we also allow for the possibility of serial
correlation of unknown form, which causes Ω to have nonzero off-diagonal
elements. When the pattern of the serial correlation is unknown, we can still,
under fairly weak regularity conditions, estimate the covariance matrix of the
sample moments by using a heteroskedasticity and autocorrelation consistent,
or HAC, estimator of the matrix n−1W>ΩW. This estimator, multiplied
by n, can then be used in place of W>Ω̂W in the feasible efficient GMM
estimator (9.15).

The asymptotic covariance matrix of the vector n−1/2W>(y−Xβ) of sample
moments, evaluated at β = β0, is defined as follows:

Σ ≡ plim
n→∞

1−
n
W>(y −Xβ0)(y −Xβ0)>W = plim

n→∞
1−
n
W>ΩW. (9.32)

A HAC estimator of Σ is a matrix Σ̂ constructed so that Σ̂ consistently
estimates Σ when the error terms ut display any pattern of heteroskedasticity
and/or autocorrelation that satisfies certain, generally quite weak, conditions.
In order to derive such an estimator, we begin by rewriting the definition of
Σ in an alternative way:

Σ = lim
n→∞

1−
n

n∑
t=1

n∑
s=1

E
(
utusWt

>Ws

)
, (9.33)

in which we assume that a law of large numbers can be used to justify replacing
the probability limit in (9.32) by the expectations in (9.33).

For regression models with heteroskedasticity but no autocorrelation, only
the terms with t = s contribute to (9.33). Therefore, for such models, we
can estimate Σ consistently by simply ignoring the expectation operator and
replacing the error terms ut by least-squares residuals ût, possibly with a mod-
ification designed to offset the tendency for such residuals to be too small. The
obvious way to estimate (9.33) when there may be serial correlation is again
simply to drop the expectations operator and replace utus by ûtûs, where ût

denotes the tth residual from some consistent but inefficient estimation proce-
dure, such as generalized IV. Unfortunately, this approach does not work. To
see why not, we need to rewrite (9.33) in yet another way. Let us define the
autocovariance matrices of the Wt

>ut as follows:

Γ (j) ≡





1−
n

n∑

t=j+1

E(utut−jWt
>Wt−j) for j ≥ 0,

1−
n

n∑

t=−j+1

E(ut+jutW
>

t+jWt) for j < 0.

(9.34)
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Because there are l moment conditions, these are l × l matrices. It is easy to
check that Γ (j) = Γ>(−j). Then, in terms of the matrices Γ (j), expression
(9.33) becomes

Σ = lim
n→∞

n−1∑

j=−n+1

Γ (j) = lim
n→∞

(
Γ (0) +

n−1∑

j=1

(
Γ (j) + Γ>(j)

))
. (9.35)

Therefore, in order to estimate Σ, we apparently need to estimate all of the
autocovariance matrices for j = 0, . . . , n− 1.

If ût denotes a typical residual from some preliminary estimator, the sample
autocovariance matrix of order j, Γ̂ (j), is just the appropriate expression in
(9.34), without the expectation operator, and with the random variables ut

and ut−j replaced by ût and ût−j , respectively. For any j ≥ 0, this is

Γ̂ (j) = 1−
n

n∑

t=j+1

ûtût−jWt
>Wt−j . (9.36)

Unfortunately, the sample autocovariance matrix Γ̂ (j) of order j is not a con-
sistent estimator of the true autocovariance matrix for arbitrary j. Suppose,
for instance, that j = n−2. Then, from (9.36), we see that Γ̂ (j) has only two
terms, and no conceivable law of large numbers can apply to only two terms.
In fact, Γ̂ (n− 2) must tend to zero as n →∞ because of the factor of n−1 in
its definition.

The solution to this problem is to restrict our attention to models for which
the actual autocovariances mimic the behavior of the sample autocovariances,
and for which therefore the actual autocovariance of order j tends to zero as
j → ∞. A great many stochastic processes generate error terms for which
the Γ (j) do have this property. In such cases, we can drop most of the
sample autocovariance matrices that appear in the sample analog of (9.35) by
eliminating ones for which |j| is greater than some chosen threshold, say p.
This yields the following estimator for Σ:

Σ̂HW = Γ̂ (0) +
p∑

j=1

(
Γ̂ (j) + Γ̂>(j)

)
, (9.37)

We refer to this estimator as the Hansen-White estimator, because it was
originally proposed by Hansen (1982) and White and Domowitz (1984); see
also White (2000).

For the purposes of asymptotic theory, it is necessary to let the parameter p,
which is called the lag truncation parameter, go to infinity in (9.37) at some
suitable rate as the sample size goes to infinity. A typical rate would be n1/4.
This ensures that, for large enough n, all the nonzero Γ (j) are estimated
consistently. Unfortunately, this type of result does not say how large p should
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be in practice. In most cases, we have a given, finite, sample size, and we need
to choose a specific value of p.

The Hansen-White estimator (9.37) suffers from one very serious deficiency: In
finite samples, it need not be positive definite or even positive semidefinite. If
one happens to encounter a data set that yields a nondefinite Σ̂HW, then, since
the weighting matrix for GMM must be positive definite, (9.37) is unusable.
Luckily, there are numerous ways out of this difficulty. The one that is most
widely used was suggested by Newey and West (1987). The Newey-West
estimator they propose is

Σ̂NW = Γ̂ (0) +
p∑

j=1

(
1− j

p + 1

)(
Γ̂ (j) + Γ̂>(j)

)
, (9.38)

in which each sample autocovariance matrix Γ̂ (j) is multiplied by a weight
1− j/(p + 1) that decreases linearly as j increases. The weight is p/(p + 1) for
j = 1, and it then decreases by steps of 1/(p + 1) down to a value of 1/(p + 1)
for j = p. This estimator evidently tends to underestimate the autocovariance
matrices, especially for larger values of j. Therefore, p should almost certainly
be larger for (9.38) than for (9.37). As with the Hansen-White estimator, p
must increase as n does, and the appropriate rate is n1/3. A procedure for
selecting p automatically was proposed by Newey and West (1994), but it is
too complicated to discuss here.

Both the Hansen-White and the Newey-West HAC estimators of Σ can be
written in the form

Σ̂ = 1−
n
W>Ω̂W (9.39)

for an appropriate choice of Ω̂. This fact, which we will exploit in the next
section, follows from the observation that there exist n×n matrices U(j) such
that the Γ̂ (j) can be expressed in the form n−1W>U(j)W, as readers are
asked to check in Exercise 9.10.

The Newey-West estimator is by no means the only HAC estimator that is
guaranteed to be positive definite. Andrews (1991) provides a detailed treat-
ment of HAC estimation, suggests some alternatives to the Newey-West esti-
mator, and shows that, in some circumstances, they may perform better than
it does in finite samples. A different approach to HAC estimation is suggested
by Andrews and Monahan (1992). Since this material is relatively advanced
and specialized, we will not pursue it further here. Interested readers may
wish to consult Hamilton (1994, Chapter 10) as well as the references already
given.

Feasible Efficient GMM Estimation

In practice, efficient GMM estimation in the presence of heteroskedasticity and
serial correlation of unknown form works as follows. As in the case with only
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heteroskedasticity that was discussed in Section 9.2, we first obtain consistent
but inefficient estimates, probably by using generalized IV. These estimates
yield residuals ût, from which we next calculate a matrix Σ̂ that estimates Σ
consistently, using (9.37), (9.38), or some other HAC estimator. The feasible
efficient GMM estimator, which generalizes (9.15), is then

β̂FGMM = (X>WΣ̂−1W>X)−1X>WΣ̂−1W>y. (9.40)

As before, this procedure may be iterated. The first-round GMM residuals
may be used to obtain a new estimate of Σ, which may be used to obtain
second-round GMM estimates, and so on. For a correctly specified model,
iteration should not affect the asymptotic properties of the estimates.

We can estimate the covariance matrix of (9.40) by

V̂ar(β̂FGMM) = n(X>WΣ̂−1W>X)−1, (9.41)

which is the analog of (9.16). The factor of n here is needed to offset the
factor of n−1 in the definition of Σ̂. We do not need to include such a factor
in (9.40), because the two factors of n−1 cancel out. As usual, the covariance
matrix estimator (9.41) can be used to construct pseudo-t tests and other
Wald tests, and asymptotic confidence intervals and confidence regions may
also be based on it. The GMM criterion function that corresponds to (9.40) is

1−
n
(y −Xβ)>WΣ̂−1W>(y −Xβ). (9.42)

Once again, we need a factor of n−1 here to offset the one in Σ̂.

The feasible efficient GMM estimator (9.40) can be used even when all the
columns of X are valid instruments and OLS would be the estimator of choice
if the error terms were not heteroskedastic and/or serially correlated. In this
case, W typically consists of X augmented by a number of functions of the
columns of X, such as squares and cross-products, and Ω̂ has squared OLS
residuals on the diagonal. This estimator, which was proposed by Cragg
(1983) for models with heteroskedastic error terms, is asymptotically more
efficient than OLS whenever Ω is not proportional to an identity matrix.

9.4 Tests Based on the GMM Criterion Function

For models estimated by instrumental variables, we saw in Section 8.5 that
any set of r equality restrictions can be tested by taking the difference between
the minimized values of the IV criterion function for the restricted and unre-
stricted models, and then dividing it by a consistent estimate of the error var-
iance. The resulting test statistic is asymptotically distributed as χ2(r). For
models estimated by (feasible) efficient GMM, a very similar testing procedure
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is available. In this case, as we will see, the difference between the constrained
and unconstrained minima of the GMM criterion function is asymptotically
distributed as χ2(r). There is no need to divide by an estimate of σ2, because
the GMM criterion function already takes account of the covariance matrix
of the error terms.

Tests of Overidentifying Restrictions

Whenever l > k, a model estimated by GMM involves l − k overidentifying
restrictions. As in the IV case, tests of these restrictions are even easier
to perform than tests of other restrictions, because the minimized value of
the optimal GMM criterion function (9.11), with n−1W>Ω0W replaced by
a HAC estimate, provides an asymptotically valid test statistic. When the
HAC estimate Σ̂ is expressed as in (9.39), the GMM criterion function (9.42)
can be written as

Q(β, y) ≡ (y −Xβ)>W (W>Ω̂W )−1W>(y −Xβ). (9.43)

Since HAC estimators are consistent, the asymptotic distribution of (9.43),
for given β, is the same whether we use the unknown true Ω0 or a matrix Ω̂
that provides a HAC estimate. For simplicity, we therefore use the true Ω0,
omitting the subscript 0 for ease of notation. The asymptotic equivalence of
the β̂FGMM of (9.15) or (9.40) and the β̂GMM of (9.10) further implies that
what we will prove for the criterion function (9.43) evaluated at β̂GMM, with
Ω̂ replaced by Ω, is equally true for (9.43) evaluated at β̂FGMM.

We remarked in Section 9.2 that Q(β0, y), where β0 is the true parameter
vector, is asymptotically distributed as χ2(l). In contrast, the minimized
criterion function Q(β̂GMM, y) is distributed as χ2(l − k), because we lose
k degrees of freedom as a consequence of having estimated k parameters.
In order to demonstrate this result, we first express (9.43) in terms of an
orthogonal projection matrix. This allows us to reuse many of the calculations
performed in Chapter 8.

As in Section 9.2, we make use of a possibly triangular matrix Ψ that satisfies
the equation Ω−1 = Ψ Ψ>, or, equivalently,

Ω = (Ψ>)−1Ψ−1. (9.44)

If the n× l matrix A is defined as Ψ−1W, and PA ≡ A(A>A)−1A>, then

Q(β,y) = (y −Xβ)>Ψ Ψ−1W
(
W>(Ψ>)−1Ψ−1W

)−1
W>(Ψ>)−1Ψ>(y −Xβ)

= (y −Xβ)>ΨPAΨ>(y −Xβ). (9.45)

Since β̂GMM minimizes (9.45), we see that one way to write it is

β̂GMM = (X>ΨPAΨ>X)−1X>ΨPAΨ>y; (9.46)
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compare (9.10). Expression (9.46) makes it clear that β̂GMM can be thought
of as a GIV estimator for the regression of Ψ>y on Ψ>X using instruments
A ≡ Ψ−1W. As in (8.61), it can be shown that

PAΨ>(y −Xβ̂GMM) = PA(I− PPAΨ>X)Ψ>y,

where PPAΨ>X is the orthogonal projection on to the subspace S(PAΨ>X).
It follows that

Q(β̂GMM,y) = y>Ψ(PA − PPAΨ>X)Ψ>y, (9.47)

which is the analog for GMM estimation of expression (8.61) for generalized
IV estimation.

Now notice that

(PA − PPAΨ>X)Ψ>X

= PAΨ>X − PAΨ>X(X>ΨPAΨ>X)−1X>ΨPAΨ>X

= PAΨ>X − PAΨ>X = O.

Since y = Xβ0 + u if the model we are estimating is correctly specified, this
implies that (9.47) is equal to

Q(β̂GMM, y) = u>Ψ(PA − PPAΨ>X)Ψ>u. (9.48)

This expression can be compared with the value of the criterion function
evaluated at β0, which can be obtained directly from (9.45):

Q(β0,y) = u>ΨPAΨ>u. (9.49)

The two expressions (9.48) and (9.49) show clearly where the k degrees of
freedom are lost when we estimate β. We know that E(Ψ>u) = 0 and that
E(Ψ>uu>Ψ) = Ψ>ΩΨ = I, by (9.44). The dimension of the space S(A) is
equal to l. Therefore, the extension of Theorem 4.1 treated in Exercise 9.2
allows us to conclude that (9.49) is asymptotically distributed as χ2(l). Since
S(PAΨ>X) is a k --dimensional subspace of S(A), it follows (see Exercise 2.18)
that PA − PPAΨ>X is an orthogonal projection on to a space of dimension
l−k, from which we see that (9.48) is asymptotically distributed as χ2(l−k).
Replacing β0 by β̂GMM in (9.48) thus leads to the loss of the k dimensions of
the space S(PAΨ>X), which are “used up” when we obtain β̂GMM.

The statistic Q(β̂GMM, y) is the analog, for efficient GMM estimation, of the
Sargan test statistic that was discussed in Section 8.6. This statistic was
suggested by Hansen (1982) in the famous paper that first proposed GMM
estimation under that name. It is often called Hansen’s overidentification sta-
tistic or Hansen’s J statistic. However, we prefer to call it the Hansen-Sargan
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statistic to stress its close relationship with the Sargan test of overidentifying
restrictions in the context of generalized IV estimation.

As in the case of IV estimation, a Hansen-Sargan test may reject the null
hypothesis for more than one reason. Perhaps the model is misspecified, either
because one or more of the instruments should have been included among the
regressors, or for some other reason. Perhaps one or more of the instruments
is invalid because it is correlated with the error terms. Or perhaps the finite-
sample distribution of the test statistic just happens to differ substantially
from its asymptotic distribution. In the case of feasible GMM estimation,
especially involving HAC covariance matrices, this last possibility should not
be discounted. See, among others, Hansen, Heaton, and Yaron (1996) and
West and Wilcox (1996).

Tests of Linear Restrictions

Just as in the case of generalized IV, both linear and nonlinear restrictions
on regression models can be tested by using the difference between the con-
strained and unconstrained minima of the GMM criterion function as a test
statistic. Under weak conditions, this test statistic is asymptotically dis-
tributed as χ2 with as many degrees of freedom as there are restrictions to
be tested. For simplicity, we restrict our attention to zero restrictions on the
linear regression model (9.01). This model can be rewritten as

y = X1β1 + X2β2 + u, E(uu>) = Ω, (9.50)

where β1 is a k1--vector and β2 is a k2 --vector, with k = k1 + k2. We wish to
test the restrictions β2 = 0.

If we estimate (9.50) by feasible efficient GMM using W as the matrix of
instruments, subject to the restriction that β2 = 0, we obtain the restricted
estimates β̃FGMM = [β̃1

.... 0]. By the reasoning that leads to (9.48), we see
that, if indeed β2 = 0, the constrained minimum of the criterion function is

Q(β̃FGMM, y) = (y −X1β̃1)>W (W>Ω̂W )−1W>(y −X1β̃1)

= u>Ψ(PA − PPAΨ>X1)Ψ
>u. (9.51)

If we subtract (9.48) from (9.51), we find that the difference between the
constrained and unconstrained minima of the criterion function is

Q(β̃FGMM, y)−Q(β̂FGMM,y) = u>Ψ(PPAΨ>X − PPAΨ>X1)Ψ
>u. (9.52)

Since S(PAΨ>X1) ⊆ S(PAΨ>X), we see that PPAΨ>X − PPAΨ>X1 is an or-
thogonal projection matrix of which the image is of dimension k − k1 = k2.
Once again, the result of Exercise 9.2 shows that the test statistic (9.52) is
asymptotically distributed as χ2(k2) if the null hypothesis that β2 = 0 is true.
This result continues to hold if the restrictions are nonlinear, as we will see
in Section 9.5.
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The result that the statistic Q(β̃FGMM, y) −Q(β̂FGMM, y) is asymptotically
distributed as χ2(k2) depends on two critical features of the construction of
the statistic. The first is that the same matrix of instruments W is used for
estimating both the restricted and unrestricted models. This was also required
in Section 8.5, when we discussed testing restrictions on linear regression
models estimated by generalized IV. The second essential feature is that the
same weighting matrix (W>Ω̂W )−1 is used when estimating both models. If,
as is usually the case, this matrix has to be estimated, it is important that the
same estimate be used in both criterion functions. If different instruments or
different weighting matrices are used for the two models, (9.52) is no longer
in general asymptotically distributed as χ2(k2).

One interesting consequence of the form of (9.52) is that we do not always
need to bother estimating the unrestricted model. The test statistic (9.52)
must always be less than the constrained minimum Q(β̃FGMM, y). Therefore,
if Q(β̃FGMM, y) is less than the critical value for the χ2(k2) distribution at
our chosen significance level, we can be sure that the actual test statistic is
even smaller and would not lead us to reject the null.

The result that tests of restrictions may be based on the difference between
the constrained and unconstrained minima of the GMM criterion function
holds only for efficient GMM estimation. It is not true for nonoptimal crite-
rion functions like (9.12), which do not use an estimate of the inverse of the
covariance matrix of the sample moments as a weighting matrix. When the
GMM estimates minimize a nonoptimal criterion function, the easiest way to
test restrictions is probably to use a Wald test; see Sections 6.7 and 8.5. How-
ever, we do not recommend performing inference on the basis of nonoptimal
GMM estimation.

9.5 GMM Estimators for Nonlinear Models

The principles underlying GMM estimation of nonlinear models are the same
as those we have developed for GMM estimation of linear regression models.
For every result that we have discussed in the previous three sections, there is
an analogous result for nonlinear models. In order to develop these results, we
will take a somewhat more general and abstract approach than we have done
up to this point. This approach, which is based on the theory of estimating
functions, was originally developed by Godambe (1960); see also Godambe
and Thompson (1978).

The method of estimating functions employs the concept of an elementary
zero function. Such a function plays the same role as a residual in the esti-
mation of a regression model. It depends on observed variables, at least one
of which must be endogenous, and on a k --vector of parameters, θ. As with
a residual, the expectation of an elementary zero function must vanish if it is
evaluated at the true value of θ, but not in general otherwise.
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We let ft(θ, yt) denote an elementary zero function for observation t. It is
called “elementary” because it applies to a single observation. In the linear
regression case that we have been studying up to this point, θ would be
replaced by β and we would have ft(β, yt) ≡ yt −Xtβ. In general, we may
well have more than one elementary zero function for each observation.

We consider a model M, which, as usual, is to be thought of as a set of DGPs.
To each DGP in M, there corresponds a unique value of θ, which is what
we often call the “true” value of θ for that DGP. It is important to note
that the uniqueness goes just one way here: A given parameter vector θ may
correspond to many DGPs, perhaps even to an infinite number of them, but
each DGP corresponds to just one parameter vector. In order to express the
key property of elementary zero functions, we must introduce a symbol for
the DGPs of the model M. It is conventional to use the Greek letter µ for this
purpose, but then it is necessary to avoid confusion with the conventional use
of µ to denote a population mean. It is usually not difficult to distinguish the
two uses of the symbol.

The key property of elementary zero functions can now be written as

Eµ

(
ft(θµ, yt)

)
= 0, (9.53)

where Eµ(·) denotes the expectation under the DGP µ, and θµ is the (unique)
parameter vector associated with µ. It is assumed that property (9.53) holds
for all t and for all µ ∈M.

If estimation based on elementary zero functions is to be possible, these func-
tions must satisfy a number of conditions in addition to condition (9.53). Most
importantly, we need to ensure that the model is asymptotically identified.
We therefore assume that, for some observations, at least,

Eµ

(
ft(θ, yt)

) 6= 0 for all θ 6= θµ. (9.54)

This just says that, if we evaluate ft at a θ that is different from the θµ

that corresponds to the DGP under which we take expectations, then the
expectation of ft(θ, yt) must be nonzero. Condition (9.54) does not have to
hold for every observation, but it must hold for a fraction of the observations
that does not tend to zero as n →∞.

In the case of the linear regression model, if we write β0 for the true parameter
vector, condition (9.54) is satisfied for observation t if, for all β 6= β0,

E(yt −Xtβ) = E
(
Xt(β0 − β) + ut

)
= E

(
Xt(β0 − β)

) 6= 0. (9.55)

It is clear from (9.55) that condition (9.54) must be satisfied whenever the
fitted values actually depend on all the components of the vector β for at
least some fraction of the observations. This is equivalent to the more familiar
condition that

SX>X ≡ plim
n→∞

1−
n
X>X
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is a positive definite matrix; see Section 6.2 for a discussion of similar asymp-
totic identification conditions.

We also need to make some assumption about the variances and covariances of
the elementary zero functions. If there is just one elementary zero function per
observation, we let f(θ, y) denote the n--vector with typical element ft(θ, yt).
If there are m > 1 elementary zero functions per observation, then we can
group all of them into a vector f(θ,y) with nm elements. In either event, we
then assume that

E
(
f(θ, y)f>(θ, y)

)
= Ω, (9.56)

where Ω, which implicitly depends on µ, is a finite, positive definite matrix.
Thus we are assuming that, under every DGP µ ∈ M, each of the ft has a
finite variance and a finite covariance with every fs for s 6= t.

Estimating Functions and Estimating Equations

Like every procedure that is based on the method of moments, the method of
estimating functions replaces relationships like (9.53) that hold in expectation
with their empirical, or sample, counterparts. Because θ is a k --vector, we
need k estimating functions in order to estimate it. In general, these are
weighted averages of the elementary zero functions. Equating the estimating
functions to zero yields k estimating equations, which must be solved in order
to obtain the GMM estimator.

As for the linear regression model, the estimating equations are, in fact, just
sample moment conditions which, in most cases, are based on instrumental
variables. There are generally more instruments than parameters, and so we
need to form linear combinations of the instruments in order to construct
precisely k estimating equations. Let W be an n × l matrix of instruments,
which are assumed to be predetermined. Usually, one column of W is a vector
of 1s. Now define Z ≡ WJ, where J is an l×k matrix with full column rank k.
Later, we will discuss how J, and hence Z, should optimally be chosen, but,
for the moment, we take Z as given.

If θµ is the parameter vector for the DGP µ under which we take expectations,
the theoretical moment conditions are

E
(
Zt
>ft(θµ, yt)

)
= 0, (9.57)

where Zt is the tth row of Z. Later on, when we take explicit account of the
covariance matrix Ω in formulating the estimating equations, we will need to
modify these conditions so that they take the form of conditions (9.31), but
(9.57) is all that is required at this stage. In fact, even (9.57) is stronger than
we really need. It is sufficient to assume that Zt and ft(θ) are asymptotically
uncorrelated, which, together with some regularity conditions, implies that

plim
n→∞

1−
n

n∑
t=1

Zt
>ft(θµ, yt) = 0. (9.58)
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The vector of estimating functions that corresponds to (9.57) or (9.58) is the
k --vector n−1Z>f(θ, y). Equating this vector to zero yields the system of
estimating equations

1−
n

Z>f(θ, y) = 0, (9.59)

and solving this system yields θ̂, the nonlinear GMM estimator.

Consistency

If we are to prove that the nonlinear GMM estimator is consistent, we must
assume that a law of large numbers applies to the vector n−1Z>f(θ,y). This
allows us to define the k --vector of limiting estimating functions,

α(θ; µ) ≡ plim
n→∞

µ
1−
n

Z>f(θ,y). (9.60)

In words, α(θ; µ) is the probability limit, under the DGP µ, of the vector of
estimating functions. Setting α(θ;µ) to 0 yields a set of limiting estimating
equations.

Either (9.57) or the weaker condition (9.58) implies that α(θµ;µ) = 0 for all
µ ∈ M. We then need an asymptotic identification condition strong enough
to ensure that α(θ; µ) 6= 0 for all θ 6= θµ. In other words, we require that the
vector θµ must be the unique solution to the system of limiting estimating
equations. If we assume that such a condition holds, it is straightforward to
prove consistency in the nonrigorous way we used in Sections 6.2 and 8.3.
Evaluating equations (9.59) at their solution θ̂, we find that

1−
n

Z>f(θ̂,y) = 0. (9.61)

As n → ∞, the left-hand side of this system of equations tends under µ
to the vector α(plimµ θ̂; µ), and the right-hand side remains a zero vector.
Given the asymptotic identification condition, the equality in (9.61) can hold
asymptotically only if

plim
n→∞

µ θ̂ = θµ.

Therefore, we conclude that the nonlinear GMM estimator θ̂, which solves the
system of estimating equations (9.59), consistently estimates the parameter
vector θµ, for all µ ∈ M, provided the asymptotic identification condition is
satisfied.

Asymptotic Normality

For ease of notation, we now fix the DGP µ ∈M and write θµ = θ0. Thus
θ0 has its usual interpretation as the “true” parameter vector. In addition,
we suppress the explicit mention of the data vector y. As usual, the proof
that n1/2(θ̂ − θ0) is asymptotically normally distributed is based on a Taylor
series approximation, a law of large numbers, and a central limit theorem. For
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the purposes of the first of these, we need to assume that the zero functions
ft are continuously differentiable in the neighborhood of θ0. If we perform
a first-order Taylor expansion of n1/2 times (9.59) around θ0 and introduce
some appropriate factors of powers of n, we obtain the result that

n−1/2Z>f(θ0) + n−1Z>F (θ̄)n1/2(θ̂ − θ0) = 0, (9.62)

where the n× k matrix F (θ) has typical element

Fti(θ) ≡ ∂ft(θ)
∂θi

, (9.63)

where θi is the ith element of θ. This matrix, like f(θ) itself, depends implic-
itly on the vector y and is therefore stochastic. The notation F (θ̄) in (9.62)
is the convenient shorthand we introduced in Section 6.2: Row t of the matrix
is the corresponding row of F (θ) evaluated at θ = θ̄t, where the θ̄t all satisfy
the inequality ∥∥θ̄t − θ0

∥∥ ≤
∥∥θ̂t − θ0

∥∥.

The consistency of θ̂ then implies that the θ̄t also tend to θ0 as n →∞.

The consistency of the θ̄t implies that

plim
n→∞

1−
n

Z>F (θ̄) = plim
n→∞

1−
n

Z>F (θ0). (9.64)

Under reasonable regularity conditions, we can apply a law of large numbers
to the right-hand side of (9.64), and the probability limit is then determinis-
tic. For asymptotic normality, we also require that it should be nonsingular.
This is a condition of strong asymptotic identification, of the sort used in
Section 6.2. By a first-order Taylor expansion of α(θ; µ) around θ0, where it
is equal to 0, we see from the definition (9.60) that

α(θ;µ) a= plim
n→∞

1−
n

Z>F (θ0)(θ − θ0). (9.65)

Therefore, the condition that the right-hand side of (9.64) is nonsingular is a
strengthening of the condition that θ is asymptotically identified. Because it
is nonsingular, the system of equations

plim
n→∞

1−
n

Z>F (θ0)(θ − θ0) = 0

has no solution other than θ = θ0. By (9.65), this implies that α(θ;µ) 6= 0
for all θ 6= θ0, which is the asymptotic identification condition.

Applying the results just discussed to equation (9.62), we find that

n1/2(θ̂ − θ0)
a= −

(
plim
n→∞

1−
n

Z>F (θ0)
)−1

n−1/2Z>f(θ0). (9.66)
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Next, we apply a central limit theorem to the second factor on the right-hand
side of (9.66). Doing so demonstrates that n1/2(θ̂ − θ0) is asymptotically
normally distributed. By (9.57), the vector n−1/2Z>f(θ0) must have mean 0,
and, by (9.56), its covariance matrix is plim n−1Z>ΩZ. In stating this re-
sult, we assume that (9.02) holds with the f(θ0) in place of the error terms.
Then (9.66) implies that the vector n1/2(θ̂ − θ0) is asymptotically normally
distributed with mean vector 0 and covariance matrix

(
plim
n→∞

1−
n

Z>F (θ0)
)−1(

plim
n→∞

1−
n

Z>ΩZ
)(

plim
n→∞

1−
n

F>(θ0)Z
)−1

. (9.67)

Since this is a sandwich covariance matrix, it is evident that the nonlinear
GMM estimator θ̂ is not, in general, an asymptotically efficient estimator.

Asymptotically Efficient Estimation

In order to obtain an asymptotically efficient nonlinear GMM estimator, we
need to choose the estimating functions n−1Z>f(θ) optimally. This is equiv-
alent to choosing Z optimally. How we should do this depends on what
assumptions we make about F (θ) and Ω, the covariance matrix of f(θ). Not
surprisingly, we will obtain results very similar to the results for linear GMM
estimation obtained in Section 9.2.

We begin with the simplest possible case, in which Ω = σ2I, and F (θ0) is
predetermined in the sense that

E
(
Ft(θ0)ft(θ0)

)
= 0, (9.68)

where Ft(θ0) is the tth row of F (θ0). If we ignore the probability limits
and the factors of n−1, the sandwich covariance matrix (9.67) is in this case
proportional to

(Z>F0)−1Z>Z(F0
>Z)−1, (9.69)

where, for ease of notation, F0 ≡ F (θ0). The inverse of (9.69), which is
proportional to the asymptotic precision matrix of the estimator, is

F0
>Z(Z>Z)−1Z>F0 = F0

>PZF0. (9.70)

If we set Z = F0, (9.69) is no longer a sandwich, and (9.70) simplifies to
F0
>F0. The difference between F0

>F0 and the general expression (9.70) is

F0
>F0 − F0

>PZF0 = F0
>MZF0,

which is a positive semidefinite matrix because MZ ≡ I−PZ is an orthogonal
projection matrix. Thus, in this simple case, the optimal instrument matrix
is just F0.

Since we do not know θ0, it is not feasible to use F0 directly as the matrix of
instruments. Instead, we use the trick that leads to the moment conditions
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(6.27) which define the NLS estimator. This leads us to solve the estimating
equations

1−
n

F>(θ)f(θ) = 0. (9.71)

If Ω = σ2I, and F (θ0) is predetermined, solving these equations yields an
asymptotically efficient GMM estimator.

It is not valid to use the columns of F (θ) as instruments if condition (9.68)
is not satisfied. In that event, the analysis of Section 8.3, taken up again in
Section 9.2, suggests that we should replace the rows of F0 by their expecta-
tions conditional on the information sets Ωt generated by variables that are
exogenous or predetermined for observation t. Let us define an n× k matrix
F̄ , in terms of its typical row F̄t, and another n× k matrix V , as follows:

F̄t ≡ E
(
Ft(θ0) |Ωt

)
and V ≡ F0 − F̄. (9.72)

The matrices F̄ and V are entirely analogous to the matrices X̄ and V used
in Section 8.3. The definitions (9.72) imply that

plim
n→∞

1−
n

F̄>F0 = plim
n→∞

1−
n

F̄>(F̄ + V ) = plim
n→∞

1−
n

F̄>F̄. (9.73)

The term plim n−1F̄>V equals O because (9.72) implies that E(Vt |Ωt) = 0,
and the conditional expectation F̄t belongs to the information set Ωt.

To find the asymptotic covariance matrix of n1/2(θ̂ − θ0) when F̄ is used in
place of Z and the covariance matrix of f(θ) is σ2 I, we start from expression
(9.67). Using (9.73), we obtain

σ2
(

plim
n→∞

1−
n

F̄>F0

)−1(
plim
n→∞

1−
n

F̄>F̄
)(

plim
n→∞

1−
n

F0
>F̄

)−1

= σ2
(

plim
n→∞

1−
n

F̄>F̄
)−1

. (9.74)

For any other choice of instrument matrix Z, the argument giving (9.73) shows
that plim n−1Z>F0 = plimn−1Z>F̄ , and so the covariance matrix (9.67) be-
comes

σ2
(

plim
n→∞

1−
n
Z>F̄

)−1(
plim
n→∞

1−
n
Z>Z

)(
plim
n→∞

1−
n
F̄>Z

)−1

. (9.75)

The inverse of (9.75) is 1/σ2 times the probability limit of

1−
n

F̄>Z(Z>Z)−1Z>F̄ = 1−
n

F̄>PZF̄. (9.76)

This expression is analogous to expression (8.21) for the asymptotic precision
of the IV estimator for linear regression models with endogenous explana-
tory variables. Since the difference between n−1F̄>F̄ and (9.76) is the pos-
itive semidefinite matrix n−1F̄>MZF̄, we conclude that (9.74) is indeed the
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asymptotic covariance matrix that corresponds to the optimal choice of Z.
Therefore, when Ft(θ) is not predetermined, we should use its expectation
conditional on Ωt in the matrix of instruments.

In practice, of course, the matrix F̄ is rarely observed. We therefore need to
estimate it. The natural way to do so is to regress F (θ) on an n × l matrix
of instruments W, where l ≥ k, with the inequality holding strictly in most
cases. This yields fitted values PW F (θ). If we estimate F̄ in this way, the
optimal estimating equations become

1−
n

F>(θ)PWf(θ) = 0. (9.77)

By reasoning like that which led to (8.27) and (9.73), it can be seen that these
estimating equations are asymptotically equivalent to the same equations with
F̄ in place of F (θ). In particular, if S(F̄ ) ⊆ S(W ), the estimator obtained
by solving (9.77) is asymptotically equivalent to the one obtained using the
optimal instruments F̄.

The estimating equations (9.77) generalize the first-order conditions (8.28) for
linear IV estimation and the moment conditions (8.84) for nonlinear IV esti-
mation. As readers are asked to show in Exercise 9.14, the solution to (9.77)
in the case of the linear regression model is simply the generalized IV estima-
tor (8.29). As can be seen from (9.67), the asymptotic covariance matrix of
the estimator θ̂ defined by (9.77) can be estimated by

σ̂2(F̂>PW F̂ )−1,

where F̂ ≡ F (θ̂), and σ̂2 ≡ n−1
∑n

t=1 f2
t (θ̂), the average of the squares of the

elementary zero functions evaluated at θ̂, is a natural estimator of σ2.

Efficient Estimation with an Unknown Covariance Matrix

When the covariance matrix Ω is unknown, the GMM estimators defined by
the estimating equations (9.71) or (9.77), according to whether or not F (θ) is
predetermined, are no longer asymptotically efficient in general. But, just as
we did in Section 9.3 with regression models, we can obtain estimates that are
efficient for a given set of instruments by using a heteroskedasticity-consistent
or a HAC estimator.

Suppose there are l > k instruments which form an n × l matrix W. As in
Section 9.2, we can construct estimating equations with instruments Z = WJ,
using a full-rank l× k matrix J to select k linear combinations of the full set
of instruments. The asymptotic covariance matrix of the estimator obtained
by solving these equations is then, by (9.67),

(
plim
n→∞

1−
n

J>W>F0

)−1(
plim
n→∞

1−
n

J>W>ΩWJ
)(

plim
n→∞

1−
n

F0
>WJ

)−1

. (9.78)
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This looks just like (9.07) with F0 in place of the regressor matrix X. The
optimal choice of J is therefore just (9.08) with F0 in place of X. Since (9.08)
depends on the unknown true Ω, we replace n−1W>ΩW by an estimator Σ̂,
which could be either a heteroskedasticity-consistent or a HAC estimator.
This yields the estimating equations

F>(θ)WΣ̂−1W>f(θ) = 0, (9.79)

and the asymptotic covariance matrix (9.78) simplifies to

(
plim
n→∞

n−2F0
>WΣ̂−1W>F0

)−1

, (9.80)

in which, if F (θ) is not predetermined, we may write F̄ instead of F0 without
changing the limit. In practice, we can use

V̂ar(θ̂) = n(F̂>WΣ̂−1W>F̂ )−1, (9.81)

where F̂ ≡ F (θ̂), to estimate the covariance matrix of θ̂. As with the estima-
tor (9.41) for the linear regression case, the factor of n is needed to offset the
factor of n−1 in Σ̂. The matrix (9.81) can be used to construct Wald tests
and asymptotic confidence intervals in the usual way.

Efficient Estimation with a Known Covariance Matrix

When the covariance matrix Ω is known, we can obtain a fully efficient GMM
estimator. As before, we let Ψ denote an n × n matrix which satisfies the
equation Ω−1 = Ψ Ψ>. The variance of the vector Ψ>f(θ0), where θ0 is the
true parameter vector for the DGP that generates the data, is then

E
(
Ψ>f(θ0)f>(θ0)Ψ

)
= Ψ>ΩΨ = I.

Thus the components of the vector Ψ>f(θ) form a set of zero functions that
are homoskedastic and serially uncorrelated. As we mentioned in Section 9.2,
it is often possible to choose Ψ in such a way that these components can be
thought of as innovations in the sense of Section 4.5, and in this case Ψ is
usually upper triangular.

The matrix Ψ does not depend on the parameters θ. Therefore, the matrix
of derivatives of the transformed zero functions in the vector Ψ>f(θ) is just
Ψ>F (θ). Consequently, if the tth row of Ψ>F (θ) is predetermined with re-
spect to the tth component of Ψ>f(θ), the optimal estimating equations are
constructed using the columns of Ψ>F (θ0) as instruments. Because θ0 is not
known, the optimal instruments are estimated along with the parameters by
using the estimating equations

1−
n

F>(θ)Ψ Ψ>f(θ) = 1−
n

F>(θ)Ω−1f(θ) = 0, (9.82)
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as in (9.71). The asymptotic covariance matrix of the resulting estimator is

Var
(
plim
n→∞

n1/2(θ̂ − θ0)
)

= plim
n→∞

(
1−
n

F0
>Ω−1F0

)−1

, (9.83)

where, as usual, F0 ≡ F (θ0). The derivation of (9.83) from (9.67) is quite
straightforward; see Exercise 9.15. In practice, the covariance matrix of θ̂ is
normally estimated by

V̂ar(θ̂) = (F̂>Ω−1F̂ )−1. (9.84)

If the tth row of Ψ>F (θ) is not predetermined with respect to the tth compo-
nent of Ψ>f(θ), and if this component is an innovation, then we can determine
the optimal instruments just as we did in Section 9.2. By analogy with (9.24),
we define the matrix F̄ (θ) implicitly by the equation

E
(
(Ψ>F (θ))t |Ωt

)
= (Ψ>F̄ (θ))t. (9.85)

As in Section 9.2, making this definition explicit depends on the details of
the particular model under study. The moment conditions for fully efficient
estimation are then given by (9.82) with F (θ) replaced by F̄ (θ). The asymp-
totic covariance matrix is (9.83) with F0 replaced by F̄0, and the covariance
matrix of θ̂ can be estimated by (9.84) with F̂ replaced by F̄ (θ̂). All of these
claims are proved in the same way as were the corresponding ones for linear
regressions in Section 9.2.

When the matrix F̄ (θ) is not observable, as is frequently the case, we can
often find an n × l matrix of instruments W, where usually l > k, such that
W satisfies the predeterminedness condition in its form (9.30), and such that
S(F (θ0)) ⊆ S(W ). In such cases, overidentified estimation that makes use
of the transformed zero functions Ψ>f(θ) and the transformed instruments
Ψ>W yields asymptotically efficient estimates. The results of Exercises 9.8
and 9.9 can also be readily extended to the present nonlinear case.

Minimizing Criterion Functions

The nonlinear GMM estimators we have discussed in this section can all, like
the ones for linear regression models, be obtained by minimizing appropri-
ately chosen quadratic forms. We restrict our attention to cases in which
plim n−1F>(θ)f(θ) 6= 0, and we employ an n × l matrix of instruments, W.
When the covariance matrix Ω of the elementary zero functions is unknown,
but a heteroskedasticity-consistent or HAC estimator Σ̂ is available, the ap-
propriate GMM criterion function is

1−
n

f>(θ)WΣ̂−1W>f(θ). (9.86)

Minimizing this function with respect to θ is equivalent to solving the esti-
mating equations (9.79).
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In the case in which the matrix Ω is known, or can be estimated consistently,
the fully efficient estimators of the previous subsection can be obtained by
minimizing the quadratic form

f>(θ)ΨPΨ>W Ψ>f(θ), (9.87)

where Ψ Ψ> = Ω−1, the components of Ψ>f(θ0) are innovations, and the
matrix W satisfies the predeterminedness condition in the form (9.30). For
full efficiency, the span S(W ) of the instruments must (asymptotically) include
as a subspace the span of the F̄ (θ0), as defined in (9.85). In Exercise 9.16,
readers are asked to check that minimizing (9.87) is asymptotically equivalent
to solving the optimal estimating equations.

Fortunately, we need not treat (9.86) and (9.87) separately. As in Section 9.4,
expression (9.86) is asymptotically unchanged if we replace Σ̂ by n−1W>ΩW,
where Ω is the true covariance matrix of the zero functions. Making this
replacement, we see that both (9.86) and (9.87) can be written as

Q(θ,y) ≡ f>(θ)ΨPAΨ>f(θ), (9.88)

where A = Ψ−1W and A = Ψ>W for the criterion functions (9.86) and
(9.87), respectively. Note how closely (9.88) resembles expression (9.45) for
the linear regression case.

It is often more convenient to compute GMM estimators by minimizing a
criterion function than by directly solving a set of estimating equations. One
advantage is that algorithms for minimizing functions tend to be more stable
numerically than algorithms for solving sets of nonlinear equations. Another
advantage is that the criterion function may have more than one stationary
point. In this event, the estimating equations are satisfied at each of these
stationary points, although the criterion function may have a unique global
minimum, which then corresponds to the solution of interest.

However, the main advantage of working with criterion functions is that the
minimized value of a GMM criterion function can be used for testing, as we
have already discussed for the linear regression case in Section 9.4. Notice that
the factor of n−1 in (9.86), which does not matter for estimation, is essential
when the criterion function is being used for testing. Its role is to offset the
factor of n−1 in the definition of Σ̂.

Tests Based on the GMM Criterion Function

The Hansen-Sargan overidentification test statistic is Q(θ̂,y), the minimized
value of the GMM criterion function. Up to an irrelevant scalar factor, the
first-order conditions for the minimization of (9.88) are

F>(θ̂)ΨPAΨ>f(θ̂) = 0, (9.89)
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and it follows from this, either by a Taylor expansion or directly by using the
result (9.66), that

n1/2(θ̂ − θ0)
a= −

(
1−
n

F0
>ΨPAΨ>F0

)−1

n−1/2F0
>ΨPAΨ>f0,

where, as usual, F0 and f0 denote F (θ0) and f(θ0), respectively. We now
follow quite closely the calculations of Section 9.4 in order to show that the
minimized quadratic form Q(θ̂, y) is asymptotically distributed as χ2(l − k).
By a short Taylor expansion, we see that

PAΨ>f(θ̂) a= PAΨ>f0 + n−1/2PAΨ>F0 n1/2(θ̂ − θ0)
a= PAΨ>f0 − n−1/2PAΨ>F0

( 1−
n
F0
>ΨPAΨ>F0

)−1
n−1/2F0

>ΨPAΨ>f0

= (I− PPAΨ>F0)PAΨ>f0,

where PPAΨ>F0 projects orthogonally on to S(PAΨ>F0). Thus Q(θ̂,y), the
minimized value of the criterion function (9.88), is

f>(θ̂)ΨPAΨ>f(θ̂) a= f0
>ΨPA(I− PPAΨ>F0)PAΨ>f0

= f0
>Ψ

(
PA − PPAΨ>F0

)
Ψ>f0. (9.90)

Because S(PAΨ>F0) ⊆ S(A), the difference of projection matrices in the
last expression above is itself an orthogonal projection matrix, of which the
image is of dimension l − k. As with (9.48), we see that estimating θ uses
up k degrees of freedom. By essentially the same argument as was used for
(9.48), it can be shown that (9.90) is asymptotically distributed as χ2(l− k).
Thus, as expected, Q(θ̂,y) is the Hansen-Sargan test statistic for nonlinear
GMM estimation.

As in the case of linear regression models, the difference between the GMM
criterion function (9.88) evaluated at restricted estimates and evaluated at
unrestricted estimates is asymptotically distributed as χ2(r) when there are r
equality restrictions. We will not prove this result, which was proved for the
linear case in Section 9.3. However, we will present a very simple argument
which provides an intuitive explanation.

Let θ̃ and θ̂ denote, respectively, the vectors of restricted and unrestricted
(feasible) efficient GMM estimates. From the result for the Hansen-Sargan test
that was just proved, we know that Q(θ̃, y) and Q(θ̂, y) are asymptotically
distributed as χ2(l − k + r) and χ2(l − k), respectively. Therefore, since a
random variable that follows the χ2(m) distribution is equal to the sum of m
independent χ2(1) variables,

Q(θ̃, y) a=
l−k+r∑

i=1

x2
i and Q(θ̂, y) a=

l−k∑

i=1

y2
i , (9.91)
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where the xi and yi are independent, standard normal random variables. Now
suppose that the first l − k of the xi are equal to the corresponding yi. If so,
(9.91) implies that

Q(θ̃, y)−Q(θ̂, y) a=
l−k+r∑

i=1

x2
i −

l−k∑

i=1

x2
i =

l−k+r∑

i=l−k+1

x2
i . (9.92)

Since the leftmost expression here is the test statistic we are interested in and
the rightmost expression is evidently distributed as χ2(r), we have apparently
proved the result. The proof is not complete, of course, because we have not
shown that the first l− k of the xi are, in fact, equal to the corresponding yi.
To prove this, we would need to show that, asymptotically, Q(θ̃, y) is equal
to Q(θ̂,y) plus another random variable independent of Q(θ̂,y). This other
random variable would then be equal to the rightmost expression in (9.92).

Nonlinear GMM Estimators: Overview

We have discussed a large number of nonlinear GMM estimators, and it can
be confusing to keep track of them all. We therefore conclude this section
with a brief summary of the principal cases that are likely to be encountered
in applied econometric work.

Case 1. Scalar covariance matrix: Ω = σ2I.

When plim n−1F>(θ)f(θ) = 0, we solve the estimating equations (9.71) to
obtain an efficient estimator. This is equivalent to minimizing f>(θ)f(θ).
The estimated covariance matrix of θ̂ is

V̂ar(θ̂) = σ̂2(F̂>F̂ )−1,

where σ̂2 consistently estimates σ2. If the model is a nonlinear regression
model, then θ̂ is really the nonlinear least-squares estimator discussed in Sec-
tion 6.3.

When plim n−1F>(θ)f(θ) 6= 0, we must replace F (θ) by an estimate of
its conditional expectation. This means that we solve the estimating equa-
tions (9.77), which is equivalent to minimizing f>(θ)PWf(θ). The estimated
covariance matrix of θ̂ is

V̂ar(θ̂) = σ̂2(F̂>PW F̂ )−1.

If the model is a nonlinear regression model, then θ̂ is really the nonlinear
instrumental variables estimator discussed in Section 8.9.

Case 2. Covariance matrix known up to a scalar factor: Ω = σ2∆.

When plim n−1F>(θ)f(θ) = 0, we solve the estimating equations (9.82), with
Ω replaced by ∆, to obtain an efficient estimator. This is equivalent to
minimizing f>(θ)∆−1f(θ). The estimated covariance matrix is

V̂ar(θ̂) = σ̂2(F̂>∆−1F̂ )−1,
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where σ̂2 consistently estimates σ2. If the underlying model is a nonlinear
regression model, then θ̂ is really the nonlinear GLS estimator discussed in
Section 7.3.

When plimn−1F>(θ)f(θ) 6= 0, we again must replace F (θ) by an estimate of
its conditional expectation. This means that we should solve the estimating
equations (9.89) with A = Ψ>W, where Ψ satisfies ∆−1 = Ψ Ψ>. This is
equivalent to minimizing (9.88) with the same definition of A. The estimated
covariance matrix is

σ̂2(F̂>ΨPΨ>W Ψ>F̂ )−1.

If the model is a linear regression model, then θ̂ is the fully efficient GMM
estimator (9.26) whenever the span of the instruments W includes the span
of the optimal instruments X̄.

When the matrix ∆ is unknown but depends on a fixed number of parameters
that can be estimated consistently, we can replace ∆ by a consistent estimator
∆̂ and proceed as if it were known, as in feasible GLS estimation.

Case 3. Unknown diagonal or general covariance matrix.

This is the most commonly encountered case in which GMM estimation is
explicitly used. Fully efficient estimation is no longer possible, but we can
still obtain estimates that are efficient for a given set of instruments by using
a consistent estimator Σ̂ of the matrix Σ defined in (9.33). This estimator is
heteroskedasticity-consistent if Ω is assumed to be diagonal and some sort of
HAC estimator otherwise. Whether or not plim n−1F>(θ)f(θ) = 0, we solve
the estimating equations (9.79), which is equivalent to minimizing (9.86). The
estimated covariance matrix is (9.81). If there is to be any gain in efficiency
relative to NLS or nonlinear IV, it is essential that l, the number of columns
of W, be greater than k, the number of parameters to be estimated.

The consistent estimator Σ̂ is usually obtained from initial estimates that
are consistent but inefficient. These may be NLS estimates, nonlinear IV
estimates, or GMM estimates that do not use the optimal weighting matrix.
The efficient GMM estimates are usually obtained by minimizing the criterion
function (9.86), and the minimized value of this criterion function then serves
as a Hansen-Sargan test statistic.

The first-round estimates θ̂ can be used to obtain a new estimate of Σ, which
can then be used to obtain a second-round estimate of θ, which can be used
to obtain yet another estimate of Σ, and so on, until the process converges
or the investigator loses patience. For a correctly specified model, all of these
estimators have the same asymptotic distribution. However, performing more
than one iteration often improves the finite-sample properties of the estimator.
Thus, if computing cost is not a problem, it may well be best to use the
continuously updated estimator that has been iterated to convergence.

For a more thorough treatment of the asymptotic theory of GMM estimation,
see Newey and McFadden (1994).

Copyright c© 2003, Russell Davidson and James G. MacKinnon



9.6 The Method of Simulated Moments 383

9.6 The Method of Simulated Moments

It is often possible to use GMM even when the elementary zero functions
cannot be evaluated analytically. Suppose they take the form

ft(yt, θ) = ht(yt)−mt(θ), t = 1, . . . , n, (9.93)

where the function ht(yt) depends only on yt and, possibly, on exogenous or
predetermined variables. The function mt(θ) depends only on exogenous or
predetermined variables and on the parameters. Like a regression function,
it is the expectation of ht(yt), conditional on the information set Ωt, under a
DGP characterized by the parameter vector θ. Estimating such a model by
GMM presents no special difficulty if the form of mt(θ) is known analytically,
but this need not be the case.

There are numerous situations in which mt(θ) may not be known analytically.
In particular, it may well occur in models which involve latent variables, that
is, variables which are not observable by an econometrician. The variables
that actually are observed are related to the latent variables in such a way
that knowing the former does not permit the values of the latter to be fully
recovered. One example, which was discussed in Section 8.2, is economic
variables that are observed with measurement error. Another example is
variables that are censored, in the sense that they are observed only to a
limited extent, for instance when only the sign of the variable is observed, or
when all negative values are replaced by zeros. Even if the distributions of
the latent variables are tractable, those of the observed variables may not be.
In particular, it may not be possible to obtain analytic expressions for their
expectations, or for the expectations of functions of them.

Even when analytic expressions are not available, it is often possible to obtain
simulation-based estimates of the distributions of the observed variables. For
example, suppose that an observed variable is equal to a latent variable plus
a measurement error of some known distribution, possibly dependent on the
parameter vector θ. Suppose further that, for a DGP characterized by θ,
we can readily generate simulated values of the latent variable. Simulated
values of the observed variable can then be generated by adding simulated
measurement errors, drawn from their known distribution, to the simulated
values of the latent variable. The mean of these drawings then provides an
estimate of the expectation of the observed variable.

In general, an unbiased simulator for the unknown expectation mt(θ) is any
function m∗

t (u
∗
t, θ) of the model parameters, variables in Ωt, and a random

variable u∗t, which either has a known distribution or can be simulated, such
that, for all θ in the parameter space, E

(
m∗

t (u
∗
t, θ)

)
= mt(θ). To simplify

notation, we write u∗t as a scalar random variable, but it may well be a vector
of random variables in practical situations of interest.

The conceptually simplest unbiased simulator can be implemented as follows.
For given θ, we obtain S simulated values y∗ts of the observed variable under

Copyright c© 2003, Russell Davidson and James G. MacKinnon



384 The Generalized Method of Moments

the DGP characterized by θ, making use of S random numbers u∗ts. Then
we let m∗(u∗ts,θ) = ht(y∗ts). If (9.93) is indeed a zero function, then ht(y∗ts)
must have expectation mt(θ), and it is obvious that the sample mean of the
simulated values h(y∗ts) is a simulation-based estimate of that expectation.
This simple simulator, which is applicable whether or not the model involves
any latent variables, is not the only possible simulator, and it may not be the
most desirable one for some purposes. However, we will not consider more
complicated simulators in this book.

If an unbiased simulator is available, the elementary zero functions (9.93) can
be replaced by the functions

f∗t (yt, θ) = ht(yt)− 1
S

S∑
s=1

m∗
t (u

∗
ts, θ), (9.94)

where the u∗ts, t = 1, . . . , n, s = 1, . . . , S, are mutually independent draws.
Since these draws are computer generated, they are evidently independent of
the yt. The functions (9.94) are legitimate elementary zero functions, even
in the trivial case in which S = 1. If the true DGP is characterized by θ0,
then E

(
ht(yt)

)
= mt(θ0) by definition, and E

(
m∗

t (u
∗
ts,θ0)

)
= mt(θ0) for all s

by construction. It follows that the expectation (9.94) is zero for θ = θ0, but
not in general for other values of θ.

The application of GMM to the zero functions (9.94) is called the method of
simulated moments, or MSM. We can use an n× l matrix W of appropriate
instruments, with l ≥ k, in order to form the empirical moments

W>f∗(θ), (9.95)

in which the n--vector of functions f∗(θ) has typical element f∗t (yt,θ). A
GMM estimator that is efficient relative to this set of empirical moments may
be obtained by minimizing the quadratic form

Q(θ,y) ≡ 1−
n

f∗>(θ)WΣ̂−1W>f∗(θ) (9.96)

with respect to θ, where Σ̂ consistently estimates the covariance matrix of
n−1/2W>f∗(θ).

Minimizing the criterion function (9.96) with respect to θ proceeds in the
usual way, with one important proviso. Each evaluation of f∗(θ) requires a
large number of pseudo-random numbers (generally, at least nS of them). It
is absolutely essential that the same set of random numbers be used every
time f∗(θ) is evaluated for a new value of the parameter vector θ. Otherwise,
(9.96) would change not only as a result of changes in θ but also as a result
of changes in the random numbers used for the simulation. Therefore, if
the algorithm happened to evaluate the criterion function twice at the same
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parameter vector, it would obtain two different values of Q(θ,y), and it could
not possibly tell where the minimum was located.

The details of the simulations, of course, differ from case to case. An impor-
tant point is that, since we require a fully specified DGP in order to generate
the simulated data, it is generally necessary to make stronger distributional
assumptions for the purposes of MSM estimation than for the purposes of
GMM estimation.

The Asymptotic Distribution of the MSM Estimator

Because the criterion function (9.96) is based on genuine zero functions, the
estimator θ̂MSM obtained by minimizing it is consistent whenever the para-
meters are identified. However, as we will see in a moment, using simulated
quantities does affect the asymptotic covariance matrix of the estimator, al-
though the effect is generally very small if S is a reasonably large number.

The first-order conditions for minimizing (9.96), ignoring a factor of 2/n, are

F ∗>(θ)WΣ̂−1W>f∗(θ) = 0, (9.97)

where F ∗(θ) is the n × k matrix of which the tith element is ∂f∗t (yt,θ)/∂θi.
The solution to these equations is θ̂MSM. Although conditions (9.97) look
very similar to conditions (9.79), the covariance matrix is, in general, a good
deal more complicated.

From (9.97), it can be seen that the instruments effectively used by the MSM
estimator are WΣ̂−1(n−1W>F ∗

0 ), where F ∗
0 ≡ F ∗(θ0), and a factor of n−1

has been used to keep the expression of order unity as n →∞. If we think of
the effective instruments as Z = WJ, then J = Σ̂−1(n−1W>F ∗

0 ).

The asymptotic covariance matrix of n1/2(θ̂MSM − θ0) can now be found by
using the general formula (9.78) for the asymptotic covariance matrix of an
efficient GMM estimator with unknown covariance matrix. This is a sandwich
estimator of the form A−1BA−1, and we find that

A = plim
n→∞

(n−1F ∗
0
>W )Σ̂−1(n−1W>F ∗

0 ), and

B = plim
n→∞

(n−1F ∗
0
>W )Σ̂−1(n−1W>ΩW )Σ̂−1(n−1W>F ∗

0 ),
(9.98)

where Ω is the n× n covariance matrix of f∗(θ0).

The tith element of F ∗(θ) is, from (9.94),

F ∗ti(θ) = − 1
S

S∑
s=1

∂m∗
t (u

∗
ts, θ)

∂θi
.

If m∗
t is differentiable with respect to θ in a neighborhood of θ, then we can
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differentiate the relation E
(
m∗

t (u
∗
t , θ)

)
= mt(θ) to find that

E
(∂m∗

t (u∗t , θ)
∂θi

)
=

∂mt(θ)
∂θi

.

We denote by M(θ) the n× k matrix with typical element ∂mt/∂θi(θ). By
a law of large numbers, we then see that plim n−1W>F ∗

0 = plim n−1W>M0,
where M0 ≡ M(θ0).

Consider next the covariance matrix Ω of f∗(θ0). The original data yt are of
course completely independent of the simulated u∗ts, and the simulated data
are independent across simulations. Thus, from (9.94), we see that

Ω = Var
(
h(y)

)
+

1
S

Var
(
m∗(θ0)

)
, (9.99)

where h(y) and m∗(θ) are the n--vectors with typical elements ht(yt) and
m∗

t (u∗t , θ), respectively. We see that the covariance matrix Ω has two com-
ponents, one due to the randomness of the data and the other due to the
randomness of the simulations. If the simulator m∗

t (·) is the simple one sug-
gested above, then the simulated data ht(y∗t ) are generated from the DGP
characterized by θ, which is also supposed to have generated the real data.
Therefore, it is clear that Var

(
h(y)

)
= Var

(
m∗(θ0)

)
, and we conclude that

Ω = (1 + 1/S)Var
(
h(y)

)
.

In general, the n× n matrix Ω cannot be estimated consistently, but an HC-
CME or HAC estimator can be used to provide a consistent estimate of Σ, the
covariance matrix of n−1/2W>f∗(θ0). For the simple simulator we have been
discussing, Σ̂ is just 1+1/S times whatever HAC estimator or HCCME would
be appropriate if there were no simulation involved. For other simulators, it
may be a little harder to estimate (9.99). In any case, once Σ̂ is available,
we use it to replace n−1W>ΩW in (9.98). We also replace plim n−1W>F ∗

0

by plimn−1W>M0. The sandwich estimator for the asymptotic covariance
matrix then simplifies greatly, and we find that the asymptotic covariance
matrix is just

plim
n→∞

(
(n−1M0

>W )Σ̂−1(n−1W>M0)
)−1

.

In practice, M0 can be estimated using either analytical or numerical deriva-
tives of (1/S)

∑S
s=1 m∗

t (u∗ts, θ̂), evaluated at θ̂MSM. However, for this to be a
reliable estimator, it is necessary for S to be reasonably large. If we let M̂
denote the estimate of M0, then in practice we use

V̂ar(θ̂MSM) = n(M̂>WΣ̂−1W>M̂)−1. (9.100)

Notice that (9.100) has essentially the same form as (9.41) and (9.81), the esti-
mated covariance matrices for the feasible efficient GMM estimators of linear
regression and general nonlinear models, respectively. The most important
new feature of (9.100) is the factor of 1 + 1/S, which is buried in Σ̂.
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The Lognormal Distribution: An Example

Since the implementation of MSM estimation typically involves several steps
and can be rather tricky, we now work through a simple example in detail.
The example is in fact sufficiently simple that there is no need for simulation
at all; we can work out the “right answer” directly. This provides a benchmark
with which to compare the various other estimators that we consider. In order
to motivate these other estimators, we demonstrate how GMM can be used to
match moments of distributions. Moment matching can be done quite easily
when the moments to be matched can be expressed analytically as functions
of the parameters to be estimated, and no simulation is needed in such cases.
If analytic expressions are not available, moment matching can still be done
whenever we can simulate the random variables of which the expectations are
the moments to be matched.

A random variable is said to follow the lognormal distribution if its logarithm
is normally distributed. The lognormal distribution for a scalar random vari-
able y thus depends on just two parameters, the expectation and the variance
of log y. Formally, if z ∼ N(µ, σ2), then the variable y ≡ exp(z) is lognormally
distributed, with a distribution characterized by µ and σ2.

Suppose we have an n--vector y, of which the components yt are IID, each
lognormally distributed with unknown parameters µ and σ2. The “right” way
to estimate these unknown parameters is to take logs of each component of y,
thus obtaining an n--vector z with typical element zt, and then to estimate µ
and σ2 by the sample mean and sample variance of the zt. This can be done
by regressing z on a constant.

The above estimation method implicitly matches the first and second moments
of the log of yt in order to estimate the parameters. It yields the parameter
values that give theoretical moments equal to the corresponding moments in
the sample. Since we have two parameters to estimate, we need at least two
moments. But other sets of two moments could also be used in order to
obtain MM estimators of µ and σ2. So could sets of more than two moments,
although the match could not be perfect, because there would implicitly be
overidentifying restrictions.

We now consider precisely how we might estimate µ and σ2 by matching the
first moment of the yt along with the first moment of the zt. With this choice,
it is once more possible to obtain an analytical answer, because, as the result
of Exercise 9.19 shows, the expectation of yt is exp(µ+ 1

2σ2). Thus, as before,
we estimate µ by using z̄, the sample mean of the zt, and then estimate σ2

by solving the equation
log ȳ = z̄ + 1

2 σ̂2

for σ̂2, where ȳ is the sample mean of the yt. The estimate is

σ̂2 = 2(log ȳ − z̄). (9.101)
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This estimate is not, except by random accident, numerically equal to the
estimate obtained by regressing z on a constant, and in fact it has a higher
variance; see Exercises 9.20 and 9.21.

Let us formalize the estimation procedure described above in terms of zero
functions and GMM. The moments used are the first moments of the yt and
the zt, for t = 1, . . . , n. For each observation, then, there are two elementary
zero functions, which serve to express the expectations of the yt and the zt in
terms of the parameters µ and σ2. We write these elementary zero functions
as follows:

ft1(zt, µ, σ2) = zt − µ; ft2(yt, µ, σ2) = yt − exp(µ + 1
2σ2). (9.102)

The derivatives of these functions with respect to the parameters are

∂ft1

∂µ
= −1;

∂ft1

∂σ2
= 0;

∂ft2

∂µ
= −eµ+σ2/2;

∂ft2

∂σ2
= − 1−

2
eµ+σ2/2. (9.103)

These derivatives, which are all deterministic, allow us to find the optimal
instruments for the estimation of µ and σ2 on the basis of the zero func-
tions (9.102), provided that we can also obtain the covariance matrix Ω of
the zero functions.

Notice that, in contrast to many GMM estimation procedures, this one in-
volves two elementary zero functions and no instruments. Nevertheless, we
can set the problem up so that it looks like a standard one. Let f1(µ, σ2)
and f2(µ, σ2) be two n--vectors with typical components ft1(zt, µ, σ2) and
ft2(yt, µ, σ2), respectively. For notational simplicity, we suppress the explicit
dependence of these vectors on the yt and the zt. The 2n--vector f(µ, σ2) of
the full set of elementary zero functions, and the 2n × 2 matrix F (µ, σ2) of
the derivatives with respect to the parameters, can thus be written as

f(µ, σ2) =
[

f1(µ, σ2)
f2(µ, σ2)

]
and F (µ, σ2) = −

[
ι 0
aι 1

2aι

]
, (9.104)

where a ≡ exp(µ + 1/2σ2). The constant vectors ι in F (µ, σ2) arise because
none of the derivatives in (9.103) depends on t, which is a consequence of the
assumption that the data are IID.

Because f(µ, σ2) is a 2n--vector, the covariance matrix Ω is 2n × 2n. This
matrix can be written as

Ω = E

([
f10

f20

]
[ f>10 f>20 ]

)
,

where fi0, i = 1, 2, is fi evaluated at the true values µ0 and σ2
0 . Since the

data are IID, Ω can be partitioned as follows into four n× n blocks, each of
which is proportional to an identity matrix. The result is

Ω =
[

σ2
z I σzyI

σyzI σ2
yI

]
, (9.105)
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where the coefficients of the identity matrices are the variances and covariances
σ2

y ≡ Var(yt), σ2
z ≡ Var(zt), and σyz = σzy ≡ Cov(yt, zt).

We now have everything we need to set up the efficient estimating equations
(9.82), which, ignoring the factor of n−1, become

F>(µ, σ2)Ω−1f(µ, σ2) = 0, (9.106)

where f(·) and F (·) are given by (9.104), and Ω is given by (9.105). By
explicitly performing the multiplications of partitioned matrices in (9.106),
inverting Ω, and ignoring irrelevant scalar factors, we obtain

[
σ2

y − aσyz aσ2
z − σyz

− 1
2aσyz

1
2aσ2

z

][
ι> 0
0 ι>

][
f1(µ, σ2)
f2(µ, σ2)

]
= 0.

Since the leftmost factor above is a 2×2 nonsingular matrix, we see that these
estimating equations are equivalent to

ι>f1(µ, σ2) = 0 and ι>f2(µ, σ2) = 0. (9.107)

The solution to these two equations is µ̂ = z̄ and σ̂2 given by (9.101). Curi-
ously, it appears that the explicit expressions for F (·) and Ω are not needed
in order to formulate the estimator. They are needed, however, for the evalu-
ation of expression (9.67) for its asymptotic covariance matrix. This is left as
an exercise for the reader; in particular, the same expression for the variance
of σ̂2 should be found as in the answer to Exercise 9.21.

As we mentioned above, it is possible to use more than two moments. Suppose
that, in addition to matching the first moments of the zt and the yt, we also
wish to match the second moment of the yt, or, equivalently, the first moment
of the y2

t . Since the log of y2
t is just 2zt, which is distributed as N(2µ, 4σ2),

the expectation of y2
t is exp

(
2(µ + σ2)

)
. We now have three elementary zero

functions for each observation, the two given in (9.102) and

ft3(yt, µ, σ2) = y2
t − exp

(
2(µ + σ2)

)
.

The vector f(·) and the matrix F (·), originally defined in (9.104), now both
have 3n rows. The latter still has two columns, both of which can be parti-
tioned into three n--vectors, each proportional to ι. Further, the matrix Ω
of (9.105) grows to become a 3n × 3n matrix. It is then a matter of taste
whether to set up a just identified estimation problem using as optimal in-
struments the two columns of Ω−1F (µ, σ2), or to use three instruments, which
are the columns of the matrix

W ≡



ι 0 0
0 ι 0
0 0 ι


, (9.108)
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and to construct an optimal weighting matrix. Whichever choice is made, it
is necessary to estimate Ω in order to construct the optimal instruments for
the first method, or the optimal weighting matrix for the second.

The procedures we have just described depend on the fact that we know the
analytic forms of E(zt), E(yt), and E(y2

t ). In more complicated applications,
comparable analytic expressions for the moments to be matched might not be
available; see Exercise 9.24 for an example. In such cases, simulators can be
used to replace such analytic expressions. We illustrate the method for the
case of the lognormal distribution, matching the first moments of zt and yt,
pretending that we do not know the analytic expressions for their expectations.

For any given values of µ and σ2, we can draw from the lognormal distribution
characterized by these values by first using a random number generator to
give a drawing u∗ from N(0, 1) and then computing y∗ = exp(µ + σu∗). Thus
unbiased simulators for the expectations of z ≡ log y and of y itself are

m∗
1(u

∗, µ, σ2) ≡ µ + σu∗ and m∗
2(u

∗, µ, σ2) ≡ exp(µ + σu∗).

If we perform S simulations, the zero functions for MSM estimation can be
written as

f∗t1(zt, µ, σ2) = zt − 1
S

S∑
s=1

m∗
1(u

∗
ts, µ, σ2) and

f∗t2(yt, µ, σ2) = yt − 1
S

S∑
s=1

m∗
2(u

∗
ts, µ, σ2),

where the u∗ts are IID standard normal. Comparison with (9.102) shows clearly
how we replace analytic expressions for the moments, assumed to be unknown,
by simulation-based estimates.

Since the data are IID, it might appear tempting to use just one set of random
numbers, u∗s, s = 1, . . . , S, for all t. However, doing this would introduce
dependence among the zero functions, greatly complicating the computation
of their covariance matrix. As S becomes large, of course, the law of large
numbers ensures that this effect becomes less and less important. Using just
one set of random numbers would in any case not affect the consistency of the
MSM estimator, merely that of the covariance matrix estimate.

By analogy with (9.107), we can see that the MSM estimating equations are

ι>f∗1 (µ̂, σ̂2) = 0 and ι>f∗2 (µ̂, σ̂2) = 0. (9.109)

Here we have again grouped the elementary zero functions into two n--vectors
f∗1 (·) and f∗2 (·). Recalling that the random numbers u∗ts are drawn only once

Copyright c© 2003, Russell Davidson and James G. MacKinnon



9.6 The Method of Simulated Moments 391

for the entire procedure, let us make the definitions

mt1(µ, σ2) ≡ 1
S

S∑
s=1

m∗
1(u

∗
ts, µ, σ2) = µ + σ

1
S

S∑
s=1

u∗ts, and

mt2(µ, σ2) ≡ 1
S

S∑
s=1

m∗
2(u

∗
ts, µ, σ2) =

1
S

S∑
s=1

exp(µ + σu∗ts).

(9.110)

It is clear that, as S → ∞, these functions tend for all t to the limits of the
expectations of z and y, respectively. It is also not hard to see that these
limits are µ and exp(µ + 1

2σ2).

On dividing by the sample size n and rearranging, the estimating equa-
tions (9.109) can be written as

m̄1(µ, σ2) = z̄ and m̄2(µ, σ2) = ȳ, (9.111)

where z̄ and ȳ are the sample averages of the zt and the yt, respectively, and

m̄i(µ, σ2) ≡ 1−
n

n∑
t=1

mti(µ, σ2), i = 1, 2.

Equations (9.111) can be solved in various ways. One approach is to turn the
problem of solving them into a minimization problem. Let

W ≡
[

ι 0
0 ι

]
. (9.112)

Then it is not difficult to see that minimizing the quadratic form

[
z −m1(µ, σ2)
y −m2(µ, σ2)

]>
WW>

[
z −m1(µ, σ2)
y −m2(µ, σ2)

]
(9.113)

also solves equations (9.111); see Exercise 9.23. Here the n--vectors m1(·) and
m2(·) have typical elements mt1(·) and mt2(·), respectively.

Alternatively, we can use Newton’s Method directly. We discussed this proce-
dure in Section 6.4, in connection with minimizing a nonlinear function, but it
can also be applied to sets of equations like (9.111). Suppose that we wish to
solve a set of k equations of the form g(θ) = 0 for a k --vector of unknowns θ,
where g(·) is also a k --vector. The iterative step analogous to (6.43) is

θ(j+1) = θ(j) −G−1(θ(j))g(θ(j)), (9.114)

where G(θ) is the Jacobian matrix associated with g(θ). This k × k matrix
contains the derivatives of the components of g(θ) with respect to the elements
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of θ. For the estimating equations (9.111), the iterative step (9.114) becomes

[
µ(j+1)

σ2
(j+1)

]
=

[
µ(j)

σ2
(j)

]
−




∂m̄1

∂µ

∂m̄1

∂σ2

∂m̄2

∂µ

∂m̄2

∂σ2




[
m̄1(µ(j), σ

2
(j))− z̄

m̄2(µ(j), σ
2
(j))− ȳ

]
,

where all the partial derivatives are evaluated at (µ(j), σ
2
(j)). It should be

noted that these partial derivatives are known analytically, as they can be
calculated directly from (9.110).

To estimate the asymptotic covariance matrix of the MSM estimates, we can
use any suitable estimator of (9.81), provided we remember to multiply the
result by 1 + 1/S in order to account for the simulation randomness. The
instrument matrix W of (9.81) is just the matrix W of (9.112). We are
pretending that we do not know the analytic form of the matrix F (µ, σ2)
given in (9.104), and so instead we use the matrix of partial derivatives of m1

and m2, evaluated at µ̂ and σ̂2. This matrix is

F̂ ≡




∂m1

∂µ
(µ̂, σ̂2)

∂m1

∂σ2 (µ̂, σ̂2)

∂m2

∂µ
(µ̂, σ̂2)

∂m2

∂σ2 (µ̂, σ̂2)


; (9.115)

note that each block in F̂ is an n--vector. If we use Newton’s Method for the
estimation, then all the partial derivatives in this matrix have already been
computed. Finally, the covariance matrix Ω of the elementary zero functions
can be estimated using (9.105), by replacing the unknown quantities σ2

z , σ2
y,

and σzy with their sample analogs. If we denote the result of this by Ω̂, then
our estimate of the covariance matrix of µ̂ and σ̂2 is

V̂ar
[

µ̂

σ̂2

]
= (W>F̂ )−1W>Ω̂W (F̂>W )−1, (9.116)

with W given by (9.112) and F̂ given by (9.115).

MSM Estimation: Conclusion

Although it is very special, the example of the previous subsection illustrates
most of the key features of MSM estimation. The example shows how to
estimate two parameters by using two or more elementary zero functions,
even when there are no genuine instruments. In econometric applications, it
is more common for there to be as many elementary zero functions as there are
dependent variables, just one in the case of univariate models, and for there
to be more instruments than parameters. Also, in many applications, the
data are not IID, but this complication generally does not require substantial
changes to the methods illustrated above.
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Inference in models estimated by MSM is almost always based on asymptotic
theory, and it may therefore be quite unreliable in finite samples. Since MSM
estimation makes sense only when a model is too intractable for less compu-
tationally demanding methods to be applicable, the cost of estimating such
a model a large number of times, as would be needed to employ bootstrap
methods, is likely to be prohibitive.

Not surprisingly, the literature on MSM is relatively recent. The two classic
papers are McFadden (1989), who seems to have coined the name, and Pakes
and Pollard (1989). Other important early papers include Lee and Ingram
(1991), Keane (1994), McFadden and Ruud (1994), and Gallant and Tauchen
(1996). An interesting early application of the method is Duffie and Singleton
(1993). Useful references include Hajivassiliou and Ruud (1994), Gouriéroux
and Monfort (1996), and van Dijk, Monfort, and Brown (1995), which is a
collection of papers, both theoretical and applied.

9.7 Final Remarks

As its name implies, the generalized method of moments is a very general
estimation method indeed, and numerous other methods can be thought of
as special cases. These include all of the ones we have discussed so far: MM,
OLS, NLS, GLS, and IV. Thus the number of techniques that can legitimately
be given the label “GMM” is bewilderingly large. To avoid bewilderment, it
is best not to attempt to enumerate all the possibilities, but simply to list
some of the ways in which various GMM estimators differ:

• Methods for which the explanatory variables are exogenous or predeter-
mined (including OLS, NLS, and GLS), and for which no extra instru-
ments are required, versus methods that do require additional exogenous
or predetermined instruments (including linear and nonlinear IV).

• Methods for linear models (including OLS, GLS, linear IV, and the GMM
techniques discussed in Section 9.2) versus methods for nonlinear models
(including NLS, GNLS, nonlinear IV, and the GMM techniques discussed
in Section 9.5).

• Methods that are inefficient for a given set of moment conditions, which
have sandwich covariance matrices, versus methods that are efficient for
the same set of moment conditions, which do not.

• Methods that are fully efficient, because they are based on optimal in-
struments, versus methods that are not fully efficient.

• Methods based on a covariance matrix that is known, at least up to a
finite number of parameters which can be estimated consistently, versus
methods that require an HCCME or a HAC estimator. The latter can
never be fully efficient.
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• Methods that involve simulation, such as MSM, versus methods where
the criterion function can be evaluated analytically.

• Univariate models versus multivariate models. We have not yet discussed
any methods for estimating the latter, but we will do so in Chapter 12.

9.8 Exercises

9.1 Show that the difference between the matrix

(J>W>X)−1J>W>ΩWJ (X>WJ)−1

and the matrix
(X>W (W>ΩW )−1W>X)−1

is a positive semidefinite matrix. Hints: Recall Exercise 3.8. Express the
second of the two matrices in terms of the projection matrix PΩ1/2W , and
then find a similar projection matrix for the first of them.

9.2 Let the n--vector u be such that E(u) = 0 and E(uu>) = I, and let the n× l
matrix W be such that E(Wtut) = 0 and that E(utus |Wt, Ws) = δts, where
δts is the Kronecker delta introduced in Section 1.4. Assume that SW>W ≡
plim n−1W>W is finite, deterministic, and positive definite. Explain why
the quadratic form u>PW u must be asymptotically distributed as χ2(l).

9.3 Consider the quadratic form x>Ax, where x is a p × 1 vector and A is a
p× p matrix, which may or may not be symmetric. Show that there exists a
symmetric p × p matrix B such that x>Bx = x>Ax for all p × 1 vectors x,
and give the explicit form of a suitable B.

?9.4 For the model (9.01) and a specific choice of the l × k matrix J, show that
minimizing the quadratic form (9.12) with weighting matrix Λ = JJ> gives
the same estimator as solving the moment conditions (9.05) with the given J.
Assuming that these moment conditions have a unique solution for β, show
that the matrix JJ> is of rank k, and hence positive semidefinite without
being positive definite.

Construct a symmetric, positive definite, l × l weighting matrix Λ such that
minimizing (9.12) with this Λ leads once more to the same estimator as that
given by solving conditions (9.05). It is convenient to take Λ in the form
JJ>+ NN>. In the construction of N , it may be useful to partition W as
[W1 W2], where the n× k matrix W1 is such that W1

>X is nonsingular.

?9.5 Consider the linear regression model with serially correlated errors,

yt = β1 + β2xt + ut, ut = ρut−1 + εt, (9.117)

where the εt are IID, and the autoregressive parameter ρ is assumed either
to be known or to be estimated consistently. The explanatory variable xt is
assumed to be contemporaneously correlated with εt (see Section 8.4 for the
definition of contemporaneous correlation).

Recall from Chapter 7 that the covariance matrix Ω of the vector u with
typical element ut is given by (7.32), and that Ω−1 can be expressed as Ψ Ψ>,
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where Ψ is defined in (7.60). Express the model (9.117) in the form (9.20),
without taking account of the first observation.

Let Ωt be the information set for observation t with E(εt |Ωt) = 0. Suppose
that there exists a matrix Z of instrumental variables, with Zt ∈ Ωt, such that
the explanatory vector x with typical element xt is related to the instruments
by the equation

x = Zπ + v, (9.118)

where E(vt |Ωt) = 0. Derive the explicit form of the expression (Ψ>X̄)t
defined implicitly by equation (9.24) for the model (9.117). Find a matrix W
of instruments that satisfy the predeterminedness condition in the form (9.30)
and that lead to asymptotically efficient estimates of the parameters β1 and β2

computed on the basis of the theoretical moment conditions (9.31) with your
choice of W.

?9.6 Consider the model (9.20), where the matrix Ψ is chosen in such a way that
the transformed error terms, the (Ψ>u)t, are innovations with respect to
the information sets Ωt. In other words, E((Ψ>u)t |Ωt) = 0. Suppose that
the n × l matrix of instruments W is predetermined in the usual sense that
Wt ∈ Ωt. Show that these assumptions, along with the assumption that
E((Ψ>u)2t |Ωt) = E((Ψ>u)2t ) = 1 for t = 1, . . . , n, are enough to prove the
analog of (9.02), that is, that

Var(n−1/2W>Ψ>u) = n−1E(W>W ).

In order to perform just-identified estimation, let the n× k matrix Z = WJ,
for an l×k matrix J of full column rank. Compute the asymptotic covariance
matrix of the estimator obtained by solving the moment conditions

Z>Ψ>(y −Xβ) = J>W>Ψ>(y −Xβ) = 0. (9.119)

The covariance matrix you have found should be a sandwich. Find the choice
of J that eliminates the sandwich, and show that this choice leads to an
asymptotic covariance matrix that is smaller, in the usual sense, than the
asymptotic covariance matrix for any other choice of J.

Compute the GMM criterion function for model (9.20) with instruments W,
and show that the estimator found by minimizing this criterion function is
just the estimator obtained using the optimal choice of J.

9.7 Compare the asymptotic covariance matrix found in the preceding question
for the estimator of the parameters of model (9.20), obtained by minimizing
the GMM criterion function for the n × l matrix of predetermined instru-
ments W, with the covariance matrix (9.29) that corresponds to estimation
with instruments Ψ>X̄. In particular, show that the difference between the
two is a positive semidefinite matrix.

9.8 Consider overidentified estimation based on the moment conditions

E(W>Ω−1(y −Xβ)) = 0,

which were given in (9.31), where the n× l matrix of instruments W satisfies
the predeterminedness condition (9.30). Derive the GMM criterion function
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for these theoretical moment conditions, and show that the estimating equa-
tions that result from the minimization of this criterion function are

X>Ω−1W (W>Ω−1W )−1W>Ω−1(y −Xβ) = 0. (9.120)

Suppose that S(X̄), the span of the n × k matrix X̄ of optimal instruments
defined by (9.24), is a linear subspace of S(W ), the span of the transformed
instruments. Show that, in this case, the estimating equations (9.120) are
asymptotically equivalent to

X̄>Ω−1(y −Xβ) = 0,

of which the solution is the efficient estimator β̂EGMM defined in (9.26).

9.9 Show that the asymptotic covariance matrix of the estimator obtained by
solving the estimating equations (9.120) is

plim
n→∞

(
1−
nX̄>Ω−1W (W>Ω−1W )−1W>Ω−1X̄

)−1

. (9.121)

By expressing this asymptotic covariance matrix in terms of a matrix Ψ that
satisfies the equation Ω−1 = Ψ Ψ>, show that the difference between it and
the asymptotic covariance matrix of the efficient estimator β̂EGMM of (9.26)
is a positive semidefinite matrix.

?9.10 Give the explicit form of the n × n matrix U(j) for which Γ̂ (j), defined
in (9.36), takes the form n−1W>U(j)W.

9.11 This question uses data on daily returns for the period 1989–1998 from the
file daily-crsp.data. These data are made available by courtesy of the Center
for Research in Security Prices (CRSP); see the comments at the bottom of
the file. Let rt denote the daily return on shares of Mobil Corporation, and
let vt denote the daily return for the CRSP value-weighted index. Using all
but the first four observations (to allow for lags), run the regression

rt = β1 + β2vt + ut

by OLS. Report three different sets of standard errors: the usual OLS ones,
ones based on the simplest HCCME, and ones based on a more advanced
HCCME that corrects for the downward bias in the squared OLS residuals;
see Section 5.5. Do the OLS standard errors appear to be reliable?

Assuming that the ut are heteroskedastic but serially uncorrelated, obtain
estimates of the βi that are more efficient than the OLS ones. For this purpose,
use r2

t−1, v2
t , v2

t−1, and v2
t−2 as additional instruments. Do these estimates

appear to be more efficient than the OLS ones?

9.12 Using the data for consumption (Ct) and disposable income (Yt) contained in
the file consumption.data, construct the variables ct = log Ct, ∆ct = ct−ct−1,
yt = log Yt, and ∆yt = yt − yt−1. Then, for the period 1953:1 to 1996:4, run
the regression

∆ct = β1 + β2∆yt + β3∆yt−1 + ut (9.122)

by OLS, and test the hypothesis that the ut are serially uncorrelated against
the alternative that they follow an AR(1) process.
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Calculate eight sets of HAC estimates of the standard errors of the OLS
parameter estimates from regression (9.122), using the Newey-West estimator
with the lag truncation parameter set to the values p = 1, 2, 3, 4, 5, 6, 7, 8.

9.13 Using the squares of ∆yt, ∆yt−1, and ∆ct−1 as additional instruments, obtain
feasible efficient GMM estimates of the parameters of (9.122) by minimizing
the criterion function (9.42), with Σ̂ given by the HAC estimators computed
in the previous exercise. For p = 6, carry out the iterative procedure described
in Section 9.3 by which new parameter estimates are used to update the HAC
estimator, which is then used to update the parameter estimates. Warning: It
may be necessary to rescale the instruments so as to avoid numerical problems.

9.14 Suppose that ft = yt −Xtβ. Show that, in this special case, the estimating
equations (9.77) yield the generalized IV estimator.

9.15 Starting from the asymptotic covariance matrix (9.67), show that, when
Ω−1F0 is used in place of Z, the covariance matrix of the resulting esti-
mator is given by (9.83). Then show that, for the linear regression model
y = Xβ + u with exogenous explanatory variables X, this estimator is the
GLS estimator.

?9.16 The minimization of the GMM criterion function (9.87) yields the estimating
equations (9.89) with A = Ψ>W. Assuming that the n× l instrument matrix
W satisfies the predeterminedness condition in the form (9.30), show that
these estimating equations are asymptotically equivalent to the equations

F̄0
>ΨPΨ>W Ψ>f(θ̂) = 0, (9.123)

where, as usual, F̄0 ≡ F̄ (θ0), with θ0 the true parameter vector. Next, derive
the asymptotic covariance matrix of the estimator defined by these equations.

Show that the equations (9.123) are the optimal estimating equations for
overidentified estimation based on the transformed zero functions Ψ>f(θ)
and the transformed instruments Ψ>W. Show further that, if the condition
S(F̄ ) ⊆ S(W ) is satisfied, the asymptotic covariance matrix of the estimator
obtained by solving equations (9.123) coincides with the optimal asymptotic
covariance matrix (9.83).

?9.17 Suppose the n--vector f(θ) of elementary zero functions has a covariance
matrix σ2I. Show that, if the instrumental variables used for GMM estimation
are the columns of the n× l matrix W, the GMM criterion function is

1

σ2
f>(θ)PW f(θ). (9.124)

Next, show that, whenever the instruments are predetermined, the artificial
regression

f(θ) = −PW F (θ)b + residuals, (9.125)

where F (θ) is defined as usual by (9.63), satisfies all the requisite properties
for hypothesis testing. These properties, which are spelled out in detail in
Exercise 8.20 in the context of the IVGNR, are that the regressand should be
orthogonal to the regressors when they are evaluated at the GMM estimator
obtained by minimizing (9.124); that the OLS covariance matrix from (9.125)
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should be a consistent estimate of the asymptotic variance of that estimator;
and that (9.125) should admit one-step estimation.

?9.18 Derive a heteroskedasticity robust version of the artificial regression (9.125),
assuming that the covariance matrix of the vector f(θ) of zero functions is
diagonal, but otherwise arbitrary.

?9.19 If the scalar random variable z is distributed according to the N(µ, σ2) dis-
tribution, show that

E(ez) = exp(µ + 1
2
σ2).

?9.20 Let the components zt of the n--vector z be IID drawings from the N(µ, σ2)
distribution, and let s2 be the OLS estimate of the error variance from the
regression of z on the constant vector ι. Show that the variance of s2 is
2σ4/(n− 1).

Would this result still hold if the normality assumption were dropped? With-
out this assumption, what would you need to know about the distribution of
the zt in order to find the variance of s2?

?9.21 Using the delta method, obtain an expression for the asymptotic variance of
the estimator defined by (9.101) for the variance of the normal distribution
underlying a lognormal distribution. Show that this asymptotic variance is
greater than that of the sample variance of the normal variables themselves.

?9.22 Describe the two procedures by which the parameters µ and σ2 of the log-
normal distribution can be estimated by the method of simulated moments,
matching the first and second moments of the lognormal variable itself, and
the first moment of its log. The first procedure should use optimal instru-
ments and be just identified; the second should use the simple instruments
of (9.108) and be overidentified.

9.23 Show that minimizing the criterion function (9.113), when W is defined in
(9.112), is equivalent to solving equations (9.111). Then show that it is also
equivalent to minimizing the criterion function

[
z −m1(µ, σ2)

y −m2(µ, σ2)

]>
W (W>W )−1W>

[
z −m1(µ, σ2)

y −m2(µ, σ2)

]
, (9.126)

which is the criterion function for nonlinear IV estimation.

?9.24 The Singh-Maddala distribution is a three-parameter distribution which has
been shown to give an acceptable account, up to scale, of the distributions
of household income in many countries. It is characterized by the following
CDF:

F (y) = 1− 1

(1 + ayb)c
, y > 0, a > 0, b > 0, c > 0. (9.127)

Suppose that you have at your disposal the values of the incomes of a random
sample of households from a given population. Describe in detail how to use
this sample in order to estimate the parameters a, b, and c of (9.127) by
the method of simulated moments, basing the estimates on the expectations
of y, log y, and y log y. Describe how to construct a consistent estimate of the
asymptotic covariance matrix of your estimator.
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