L5: Multiple regression

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

What we have learned last time...

- 1 Two-variable linear model without intercept.
- **2** Scaling and units, standardizing...
- **3** Variations of two-variable model.

Today we are going to learn...

- Three-variable model
- **2** OLS estimation of regression coefficients
- 3 The multiple coefficient of determination
- The matrix form
- **5** Method of Moments
- 6 Multiple Regression Inference
- Likelihood Ratio, Wald and Lagrange Multiplier Tests

Three-variable model → Model and assumptions

1 The three-variable population regression function

 $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$

where β_2 and β_3 are called **partial regression coefficients**

2 The assumptions

1 Linear model in terms of parameters.

- 2 X_{2i} and X_{3i} are fixed and independent of error term $cov(X_{2i}, u_i) = (X_{3i}, u_i) = 0$
- **3** Zero expectation: $E(u_i|X_{2i}, X_{3i}) = 0$
- **4** Homoscedasticity: $var(u_i) = \sigma^2$
- **5** Error terms are not correlated: $cov(u_i, u_j) = 0$ for $i \neq j$
- **6** n > p where p = 3 in this case.
- $var(X_{2i}) \neq 0$ and $var(X_{3i}) \neq 0$.
- **(3)** No exactly linear relationship between X_{2i} and X_{3i} no multicollinearity.
- **9** The model is correctly specified.
- **3** Assumptions **1-7** are the same as in two-variable model.

4 Why do we need two more assumptions **8-9** ?

Three-variable model → Why multicollinearity is evil?

() No multicollinearity means non of the regressors can be written as exact linear combinations of the remaining regressors. That means you should not be able be able to find $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$ such that

$$\lambda_1 X_{2\mathfrak{i}} + \lambda_2 X_{3\mathfrak{i}} = 0$$

2 But if you happen to have $\lambda_1 X_{2i} + \lambda_2 X_{3i} = 0$, what will happen to your model then?

$$\begin{split} Y_{i} &= \beta_{1} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + u_{i} \\ &= \beta_{1} + \beta_{2} (-\frac{\lambda_{3}}{\lambda_{2}} X_{3i}) + \beta_{3} X_{3i} + u_{i} \\ &= \beta_{1} + (\beta_{3} - \beta_{2} \frac{\lambda_{3}}{\lambda_{2}}) X_{3i} + u_{i} \end{split}$$

- **3** You will in fact have a two-variable regression model.
- **4** This perfect collinearity will not likely to happen in real data analysis.
- Multicollinearity only applies to linear relationships between regressors.
 Other situations like X_{2i} = X²_{3i} will not violate our assumptions.

Three-variable model → How do you interpret the model?

1 We alway use the conditional mean

$$E(Y_i|X_{2i}, X_{3i}) = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i}$$

2 Example **p. 191**

Three-variable model → OLS estimation of regression coefficients

1 The sample regression function is

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \hat{\beta}_3 X_{3i} + \hat{u}_i$$

2 The OLS is aiming to minimize

$$RSS = \sum \hat{u}_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_{2i} - \hat{\beta}_3 X_{3i})^2$$

3 Differentiating with respect to β_i ,i = 1, 2, 3 and set to zero yields

$$\begin{split} \bar{Y} &= \hat{\beta}_1 + \hat{\beta}_2 \bar{X}_{2i} + \hat{\beta}_3 \bar{X}_{3i} \\ \sum Y_i X_{2i} &= \hat{\beta}_1 \sum X_{2i} + \hat{\beta}_2 \sum X_{2i}^2 + \hat{\beta}_3 \sum X_{2i} X_{3i} \\ \sum Y_i X_{3i} &= \hat{\beta}_1 \sum X_{3i} + \hat{\beta}_2 \sum X_{2i} X_{3i} + \hat{\beta}_3 \sum X_{3i}^2 \end{split}$$

4 Solving the preceding formulas show that

$$\hat{\beta}_2 = \frac{\sum y_i x_{2i} \sum x_{3i}^2 - \sum y_i x_{3i} \sum x_{2i} x_{3i}}{\sum x_{2i}^2 \sum x_{3i}^2 - (\sum x_{2i} x_{3i})^2}, \\ \hat{\beta}_3 = \frac{\sum y_i x_{3i} \sum x_{2i}^2 - \sum y_i x_{2i} \sum x_{2i} x_{2i} x_{2i}}{\sum x_{2i}^2 \sum x_{3i}^2 - (\sum x_{2i} x_{3i})^2}.$$

Then $\hat{\beta}_1$ is easily obtained.

Three-variable model → Variance of regression coefficients

1 Let r_{23} be the correlation coefficient between X_2 and X_3 , $r_{23}^2 = \frac{(\sum x_{2i} x_{3i})^2}{\sum x_{2i}^2 \sum x_{3i}^2}$. The variance for β_i are

$$\begin{split} & \operatorname{var}(\hat{\beta}_{1}) = \left[\frac{1}{n} + \frac{\bar{X}_{2}^{2} \sum x_{3i}^{2} + \bar{X}_{3}^{2} \sum x_{2i}^{2} - 2\bar{X}_{2}^{2}\bar{X}_{3}^{2} \sum x_{2i}x_{3i}}{\sum x_{2i}^{2} \sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}}\right] \sigma^{2} \\ & \operatorname{var}(\hat{\beta}_{2}) = \frac{\sum x_{2i}^{2} \sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}}{\sum x_{2i}^{2} \sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}} \sigma^{2} = \frac{\sigma^{2}}{\sum x_{2i}^{2} (1 - r_{23}^{2})} \\ & \operatorname{var}(\hat{\beta}_{3}) = \frac{\sum x_{2i}^{2} \sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}}{\sum x_{2i}^{2} \sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}} \sigma^{2} = \frac{\sigma^{2}}{\sum x_{2i}^{2} (1 - r_{23}^{2})} \end{split}$$

2 And the covariance between $\hat{\beta}_2$ and $\hat{\beta}_3$ is

$$\operatorname{cov}(\hat{\beta}_{2},\hat{\beta}_{3}) = \frac{-r_{23}\sigma^{2}}{(1-r_{23}^{2})\sqrt{\sum x_{2i^{2}}}\sqrt{\sum x_{3i^{2}}}}$$

3 σ^2 is not known and estimated via $\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{n-3}$

Three-variable model → Properties of OLS

- **1** The regression line passes through the mean \bar{Y} , \bar{X}_2 and \bar{X}_3 .
- 2 The mean value of the estimated Y_i is equal to the mean of the actual Y_i (Why?)
- 3 $\sum \hat{u}_i = \overline{\hat{u}} = 0$, why?
- $\textbf{4} \quad \sum \hat{u}_i X_{2i} = \sum \hat{u}_i X_{3i} = \sum \hat{u}_i Y_i = 0$
- $\textbf{S} \ r_{23} \rightarrow 1, \ \hat{\beta}_2 \rightarrow ?, \ var(\hat{\beta}_2) \rightarrow ?. \ r_{23} \rightarrow 0, \ \hat{\beta}_2 \rightarrow ?, \ var(\hat{\beta}_2) \rightarrow ?$
- **6** The OLS estimator is the **best linear unbiased estimator** (BLUE).

Three-variable model

 \rightarrow R² and adjusted R²

() Define the **multiple coefficient of determination** R^2 as

$$\begin{split} R^{2} = & \frac{ESS}{TSS} = \frac{\sum \hat{y}_{i}^{2}}{\sum y_{i}^{2}} = \frac{\hat{\beta}_{2} \sum y_{i} x_{2i} - \hat{\beta}_{3} \sum y_{i} x_{3i}}{\sum y_{i}^{2}} \\ R^{2} = & 1 - \frac{RSS}{TSS} = 1 - \frac{\sum \hat{u}_{i}^{2}}{\sum y_{i}^{2}} = 1 - \frac{(n-3)\hat{\sigma}^{2}}{(n-1)S_{y}^{2}} \end{split}$$

- **2** $\mathbb{R}^2 \to 1$ means ?
- What will happen if you increase the regressors? R² is increasing which is bad (why?, see 4).
- **4** \mathbb{R}^2 is not comparable for different models.
- The adjusted R²,

$$\bar{R}^2 = 1 - \frac{\sum \hat{u}_i / (n-k)}{\sum y_i^2 / (n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k} = 1 - \frac{\hat{\sigma}^2}{S_Y^2}$$

where $k=\mbox{number}$ of parameters. The adjusted R^2 can be used for comparing two models.

Think about r² in two-variable regression: which is both goodness of fit coefficient and correlation coefficient. (Read p. 213)

The matrix form I

1 For a model with more than two regressors,

$$Y_i = \beta_1 + \beta_2 X_{2i} + ... + \beta_k X_{ki} + u_i$$

we write the matrix form as

$$y = X\beta + u$$

where y is the $n\times 1$ response vector, X is the $n\times k$ covariate matrix (each column corresponds to a single covariate, the first column is just a vector of ones if the intercept is included), β is $k\times 1$ coefficient vector, and u is the $n\times 1$ error term vector

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, X = \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \\ \vdots \\ \mathbf{x}'_n \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ x_{21} & \cdots & x_{2k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}, u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

where model with intercept can be viewed the first column of X contains only ones.

The matrix form II

2 E(u) = 0

$$E\begin{pmatrix} u_1\\ u_2\\ \vdots\\ u_n \end{pmatrix} = \begin{pmatrix} E(u_1)\\ E(u_2)\\ \vdots\\ E(u_n) \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ \vdots\\ 0 \end{pmatrix}$$

3 $E(uu') = \sigma^2 I$ where I is an $n \times n$ identity matrix.

$$E(uu') = E \begin{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} E(u_1^2) & E(u_1u_2) & \dots & E(u_1u_n) \\ E(u_2u_1) & E(u_2^2) & \dots & E(u_2u_n) \\ \vdots \\ E(u_nu_1) & E(u_nu_2) & \dots & E(u_n^2) \end{pmatrix} = \sigma^2 I$$

The matrix form III The OLS estimation

$$\begin{split} \hat{\beta} &= (X'X)^{-1}X'y\\ \text{cov}(\hat{\beta}) &= \sigma^2 (X'X)^{-1}\\ \hat{u}'\hat{u} &= (y - X\hat{\beta})'(y - X\hat{\beta}) = y'y - 2\hat{\beta}X'y + \hat{\beta}'X'X\hat{\beta}\\ &= y'y - \hat{\beta}X'y = \sum \hat{u}_i^2\\ \hat{\sigma}^2 &= \hat{u}'\hat{u}/(n-k) = (y'y - \hat{\beta}X'y)/(n-k) \text{ Verify this!} \end{split}$$

Details can be found in Appendix C: Matrix approach)

5 The hat matrix

In the matrix form, we have the fitted value $\hat{y}=X\hat{\beta}.$ We then have

$$\begin{split} \hat{y} &= X\hat{\beta} \\ &= X(X'X)^{-1}X'y \\ &= [X(X'X)^{-1}X']y \\ &= Hy \end{split}$$

The matrix form IV

where H is the so-called hat matrix.

- 6 Some properties of the hat matrix
 - The hat matrix is also called projection matrix— it maps the observed vector (y) to the fitted value (\hat{y}).
 - The hat matrix is symmetric (H' = H) and idempotent $(H^2 = H)$ in the linear regression (verify this!).
 - The trace of the hat matrix equals the number of independent parameters (k) of the linear model which is the rank of covariate matrix (X).

Predictions

Estimation with method of moments I → A two-variable example

 In the population regression function, we see that the error term u has zero expected value E(u) = 0 and that the covariance between X and u is zero Cov(X, u) = 0 which implies

 $\begin{aligned} \mathsf{E}(\mathsf{u}) &= \mathsf{0}\\ \mathsf{E}(\mathsf{X}\mathsf{u}) &= \mathsf{0} \end{aligned}$

• In terms of the observable variables x and y and the unknown parameters β_0 and β_1 , the above equation can be written as

$$\begin{split} E(Y - \beta_0 - \beta_1 X) &= 0\\ E[X(Y - \beta_0 - \beta_1 X)] &= 0 \end{split}$$

Estimation with method of moments II → A two-variable example

 The above equations can be used to obtain good estimators of β₀ and β₁ if we change the expectation with its sample mean by given a sample of data

$$\frac{1}{n}\sum(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) = 0$$
$$\frac{1}{n}\sum[X_i(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)] = 0$$

- These equations can be solved for β̂₀ and β̂₁.
 - 1) From the first equation we have $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$. And plugging it into the second equation yields

$$\frac{1}{n}\sum[X_{\mathfrak{i}}(Y_{\mathfrak{i}}-\bar{Y}-\hat{\beta}_{1}\bar{X}-\hat{\beta}_{1}X_{\mathfrak{i}})]=0$$

Estimation with method of moments III → A two-variable example

which gives

$$\hat{\beta}_{1} = \frac{\sum\limits_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum\limits_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

2 Now we go back to the first equation and solve the intercept.

- This is the method of moments approach to parameter estimation.
 - It relies on the sample average as an unbiased estimator of the population average and the sample variance as an unbiased estimator of the population variance.
 - **2** The only assumption needed to compute the estimates for a particular sample *X* should not be a constant, which is obvious.
- Generally, **method of moments** estimation is to replace the population moment with its sample counterpart as follows.
- The parameter θ is shown to be related to some expected value in the distribution of Y, usually E(Y) or $E(Y^2)$.

Estimation with method of moments IV → A two-variable example

- Suppose, for example, that the parameter of interest θ , is related to the population mean as $\theta = g(\mu)$ for some function g.
- Because the sample average \bar{Y} is an unbiased and **consistent** estimator of μ , it is natural to replace μ with \bar{Y} , which gives us the estimator $g(\bar{Y})$ of θ .
- The estimator $g(\bar{Y})$ is consistent for θ , and if g() is a linear function of θ , then $g(\bar{Y})$ is unbiased as well.
- The **matrix form** of method of moments in linear regression: http://russell.vcharite.univ-mrs.fr/GMMboot/chp09big.pdf

Multiple Regression Inference → Hypothesis testing

1 For a model with more than two regressors,

$$Y_i = \beta_1 + \beta_2 X_{2i} + ... + \beta_k X_{ki} + u_i$$

2 Testing individual regression coefficients: **the** *t* **test** $H_0: \beta_i = 0$ $H_a: \beta_i \neq 0$ or $H_a: \beta_i > 0$, or $H_a: \beta_i < 0$

e Testing overall significance: the t test
H₀: β₂ = β₃ = ... = β_k = 0
H_α: otherwise
I Method A: Do a lot of t test

2 Method B: ANOVA table (the F test)

Multiple Regression Inference → Hypothesis testing: Testing overall significance

Source of Variation	SS	df	MSS
ESS	$\sum \hat{y}_i^2 = \sum (\hat{Y}_i - \bar{Y})^2$	k-1	$\sum \hat{y}_i^2/(k-1)$
RSS	$\sum \hat{u}_i^2 = \sum (Y_i - \hat{Y}_i)^2$	n-k	$\sum \hat{u}_i^2/(n-k)$
TSS	$\sum y_i^2 = \sum (Y_i - \bar{Y})^2 = \sum y_i^2 + \sum \hat{u}_i^2$	n-1	

where k is number of parameters in the unrestricted model.

$$F = \frac{ESS/df_{ESS}}{RSS/df_{RSS}} = ?$$
$$= \frac{n-k}{k-1} \frac{R^2}{1-R^2}$$

Multiple Regression Inference → Testing the equality of two regression coefficients

1 For a model with more than two regressors,

$$Y_i = \beta_1 + \beta_2 X_{2i} + ... + \beta_k X_{qi} + u_i$$

- 2 We want to test e.g. $H_0: \beta_3 = \beta_5 \text{ or } \beta_3 - \beta_5 = 0$
- **3** Under the classical assumption, we have

$$t = \frac{(\hat{\beta}_{3} - \hat{\beta}_{5}) - (\beta_{3} - \beta_{5})}{se(\hat{\beta}_{3} - \hat{\beta}_{5})}$$

notice that

$$\operatorname{var}(\hat{\beta}_3 - \hat{\beta}_5) = \operatorname{var}(\hat{\beta}_3) + \operatorname{var}(\hat{\beta}_5) - 2\operatorname{cov}(\hat{\beta}_3, \hat{\beta}_5).$$

- 4 Then just do the usual t test.
- **5** Question: What are the degrees of freedom in your t statistic?

Multiple Regression Inference → The general F test

1 For a model with more than two regressors,

$$Y_i = \beta_1 + \beta_2 X_{2i} + \ldots + \beta_k X_{qi} + u_i$$

- 2 We want to test e.g. $H_0: \beta_2 = \beta_3 \text{ or}$ $H_0: \beta_3 + \beta_4 + \beta_5 = 3$
- If we assume the big model as unrestricted model (UR) and the restricted model (R) where H₀ satisfied.
- **4** For the two models,

$$F = \frac{(RSS_R - RSS_{UR})/m}{RSS_{UR}/(n-k)} = \frac{(\sum \hat{u}_R^2 - \sum \hat{u}_{UR}^2)/m}{\sum \hat{u}_{UR}^2/(n-k)} = \frac{(R_{UR}^2 - R_R^2)/m}{(1 - R_{UR}^2)/(n-k)} \sim F(m, n-k)$$

where m = number of linear restrictions.

Likelihood Ratio, Wald and Lagrange Multiplier Tests I

- The **likelihood ratio (LR) test** is based on the maximum likelihood (ML) principle.
- Under the assumption that the disturbances u_i are normally distributed, we showed that, for the two-variable regression model, the OLS and ML estimators of the regression coefficients are identical, but the estimated error variances are different. The same is true in the multiple regression case.
- To illustrate the LR test, consider the three-variable regression model

$$Y_i=\beta_1+\beta_2X_{2i}+\beta_3X_{3i}+u_i$$

You will be able to write down the likelihood function as

$$log\mathcal{L} = -nlog(\sigma) - \frac{n}{2}log(2\pi) - \frac{1}{2\sigma^2}\sum(Y_i - \beta_1 - \beta_2 X_{2i} - \beta_3 X_{3i})^2$$

Likelihood Ratio, Wald and Lagrange Multiplier Tests II

- The null hypothesis: $\beta_3=0,$ which gives the log likelihood function will then be

$$log\mathcal{L} = -nlog(\sigma) - \frac{n}{2}log(2\pi) - \frac{1}{2\sigma^2}\sum(Y_i - \beta_1 - \beta_2 X_{2i} - \beta_3 X_{3i})^2$$

which is known as the **restricted log-likelihood function** (RLLF) because it is estimated with the restriction that a priori β_3 is zero, whereas the previous is known as the **unrestricted log likelihood function** (ULLF).

The LR test obtains the following test statistic

$$\lambda = 2(ULLF - RLLF)$$

that follows the chi-square distribution with r degrees of freedom equal to the number of restrictions imposed by the null hypothesis.

Likelihood Ratio, Wald and Lagrange Multiplier Tests III

 Letting RRSS and URSS denote the restricted and unrestricted residual sums of squares. The LR test statistic can also be expressed as

 $-2\log(\lambda) = n(\log(RRSS) - \log(URSS))$

which is distributed as χ^2 with r degrees of freedom where r is the number of coefficients ommitted from the original model.

- The basic idea behind the LR test is simple:
 - If the a priori restriction(s) are valid, the restricted and unrestricted (log) LF should not be different, in which case λ in will be zero.
 - But if that is not the case, the two LFs will diverge.
 - And since in a large sample we know that λ follows the chi-square distribution, we can find out if the divergence is statistically significant, say, at a 1 or 5 percent level of significance. Or else, we can find out the p value of the estimated $\lambda.$

Likelihood Ratio, Wald and Lagrange Multiplier Tests IV

• Letting RRSS and URSS denote the restricted and unrestricted residual sums of squares. We can have the **Wald statistic**

$$\frac{(n-k)(RRSS - URSS)}{URSS}$$

which is distributed as χ^2 with r degrees of freedom.

• Furthermore,

$$\frac{(n-k+r)(RRSS-URSS)}{RRSS}$$

where k is the number of regressors in the unrestricted model is known as the **Lagrange Multiplier statistic** which also follows χ^2 distribution with r degrees of freedom.

- Comparison of the three methods
 - All three are **asymptotically equivalent** (they give the similar answers in large samples).

Likelihood Ratio, Wald and Lagrange Multiplier Tests V

• But in small samples, the relationship among three test statistics are

Wald > Likelihood Ratio > Lagrange Multiplier

That means in small samples, a hypothesis can be rejected by the Wald but not rejected by Lagrange Multiplier.

- The three test statistics can be applied to test nonlinear hypothesis in linear models.
- They can be used for testing restrictions on variance-covariance matrices.
- They can also be applied to the models where the error term is not normally distributed.
- The choice of the three test statistics depends on the computational convenience

Take home questions

- 1 Read the partial correlation coefficients **p. 213**.
- 2 Read the Chow test p. 254.
- Verify the BLUE property of OLS estimator with matrix form (Appendix CA.4)
- Ocompare the three approaches in parameter estimation: OLS, MLE and method of moments.
- Sterili Exercises (Set 3): 7.10, 7.14, 7.20, 8.2, 8.3, 8.6, 8.7, 8.11, 8.19, 8.20, C.10(p.863)
- Redo Example 8.3 with maximum likelihood estimation and carry out likelihood ratio test, Wald test, and Lagrange Multiplier test.