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What we have learned last time...

1 Two-variable linear model without intercept.
2 Scaling and units, standardizing...
3 Variations of two-variable model.
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Today we are going to learn...

1 Three-variable model

2 OLS estimation of regression coefficients

3 The multiple coefficient of determination

4 The matrix form

5 Method of Moments

6 Multiple Regression Inference

7 Likelihood Ratio, Wald and Lagrange Multiplier Tests
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Three-variable model
ï Model and assumptions

1 The three-variable population regression function

Yi = β1 + β2X2i + β3X3i + ui

where β2 and β3 are called partial regression coefficients
2 The assumptions

1 Linear model in terms of parameters.
2 X2i and X3i are fixed and independent of error term
cov(X2i,ui) = (X3i,ui) = 0

3 Zero expectation: E(ui|X2i,X3i) = 0
4 Homoscedasticity: var(ui) = σ

2

5 Error terms are not correlated: cov(ui,uj) = 0 for i ‰ j
6 n ą p where p = 3 in this case.
7 var(X2i) ‰ 0 and var(X3i) ‰ 0.
8 No exactly linear relationship between X2i and X3i — no multicollinearity.
9 The model is correctly specified.

3 Assumptions 1-7 are the same as in two-variable model.
4 Why do we need two more assumptions 8-9 ?
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Three-variable model
ï Why multicollinearity is evil?

1 No multicollinearity means non of the regressors can be written as exact
linear combinations of the remaining regressors. That means you should not
be able be able to find λ1 ‰ 0 and λ2 ‰ 0 such that

λ1X2i + λ2X3i = 0

2 But if you happen to have λ1X2i + λ2X3i = 0, what will happen to your
model then?

Yi =β1 + β2X2i + β3X3i + ui

=β1 + β2(´
λ3
λ2
X3i) + β3X3i + ui

=β1 + (β3 ´ β2
λ3
λ2

)X3i + ui

3 You will in fact have a two-variable regression model.
4 This perfect collinearity will not likely to happen in real data analysis.
5 Multicollinearity only applies to linear relationships between regressors.

Other situations like X2i = X
2
3i will not violate our assumptions.
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Three-variable model
ï How do you interpret the model?

1 We alway use the conditional mean

E(Yi|X2i,X3i) = β1 + β2X2i + β3X3i

2 Example p. 191

Feng Li (Statistics, CUFE) Econometrics 6 / 28



Three-variable model
ï OLS estimation of regression coefficients

1 The sample regression function is

Yi = β̂1 + β̂2X2i + β̂3X3i + ûi

2 The OLS is aiming to minimize

RSS =
ÿ

û2
i =

ÿ

(Yi ´ β̂1 ´ β̂2X2i ´ β̂3X3i)
2

3 Differentiating with respect to βi ,i = 1, 2, 3 and set to zero yields

Ȳ =β̂1 + β̂2X̄2i + β̂3X̄3i
ÿ

YiX2i =β̂1
ÿ

X2i + β̂2
ÿ

X2
2i + β̂3

ÿ

X2iX3i
ÿ

YiX3i =β̂1
ÿ

X3i + β̂2
ÿ

X2iX3i + β̂3
ÿ

X2
3i

4 Solving the preceding formulas show that

β̂2 =

ř

yix2i
ř

x2
3i ´

ř

yix3i
ř

x2ix3i
ř

x2
2i

ř

x2
3i ´ (

ř

x2ix3i)2 , β̂3 =

ř

yix3i
ř

x2
2i ´

ř

yix2i
ř

x2ix3i
ř

x2
2i

ř

x2
3i ´ (

ř

x2ix3i)2 .

Then β̂1 is easily obtained.
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Three-variable model
ï Variance of regression coefficients

1 Let r23 be the correlation coefficient between X2 and X3, r223 = (
ř

x2ix3i)
2

ř

x2
2i

ř

x2
3i

.
The variance for βi are

var(β̂1) =

[
1
n

+
X̄2

2
ř

x2
3i + X̄

2
3

ř

x2
2i ´ 2X̄2

2X̄
2
3

ř

x2ix3i
ř

x2
2i

ř

x2
3i ´ (

ř

x2ix3i)2

]
σ2

var(β̂2) =

ř

x2
3i

ř

x2
2i

ř

x2
3i ´ (

ř

x2ix3i)2σ
2 =

σ2
ř

x2
2i(1´ r223)

var(β̂3) =

ř

x2
2i

ř

x2
2i

ř

x2
3i ´ (

ř

x2ix3i)2σ
2 =

σ2
ř

x2
3i(1´ r223)

2 And the covariance between β̂2 and β̂3 is

cov(β̂2, β̂3) =
´r23σ

2

(1´ r223)
a

ř

x2i2
a

ř

x3i2

3 σ2 is not known and estimated via σ̂2 =
ř

û2
i

n´3
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Three-variable model
ï Properties of OLS

1 The regression line passes through the mean Ȳ, X̄2 and X̄3.
2 The mean value of the estimated Yi is equal to the mean of the actual Yi

(Why?)
3

ř

ûi = ¯̂u = 0, why?
4

ř

ûiX2i =
ř

ûiX3i =
ř

ûiYi = 0
5 r23 Ñ 1, β̂2 Ñ?, var(β̂2)Ñ?. r23 Ñ 0, β̂2 Ñ?, var(β̂2)Ñ?
6 The OLS estimator is the best linear unbiased estimator (BLUE).
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Three-variable model
ï R2 and adjusted R2

1 Define the multiple coefficient of determination R2 as

R2 =
ESS

TSS
=

ř

ŷ2
i

ř

y2
i

=
β̂2

ř

yix2i ´ β̂3
ř

yix3i
ř

y2
i

R2 =1´ RSS
TSS

= 1´
ř

û2
i

ř

y2
i

= 1´ (n´ 3)σ̂2

(n´ 1)S2
y

2 R2 Ñ 1 means ?
3 What will happen if you increase the regressors? R2 is increasing which is

bad (why?, see 4).
4 R2 is not comparable for different models.
5 The adjusted R2,

R̄2 = 1´
ř

ûi/(n´ k)
ř

y2
i/(n´ 1) = 1´ (1´ R2)

n´ 1
n´ k

= 1´ σ̂2

S2
Y

where k = number of parameters. The adjusted R2 can be used for
comparing two models.

6 Think about r2 in two-variable regression: which is both goodness of fit
coefficient and correlation coefficient. (Read p. 213)
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The matrix form I

1 For a model with more than two regressors,

Yi = β1 + β2X2i + ... + βkXki + ui

we write the matrix form as
y = Xβ+ u

where y is the nˆ 1 response vector, X is the nˆ k covariate matrix (each
column corresponds to a single covariate, the first column is just a vector of
ones if the intercept is included), β is kˆ 1 coefficient vector, and u is the
nˆ 1 error term vector

y =


y1
y2
...
yn

 ,X =


x 11
x 12
...

x 1n

 =


x11 ¨ ¨ ¨ x1k
x21 ¨ ¨ ¨ x2k

...
. . .

...
xn1 ¨ ¨ ¨ xnk

 ,β =


β1
β2
...
βk

 ,u =


u1
u2
...
un

 .

where model with intercept can be viewed the first column of X contains only
ones.
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The matrix form II
2 E(u) = 0

E


u1
u2
...
un

 =


E(u1)
E(u2)

...
E(un)

 =


0
0
...
0


3 E(uu 1) = σ2I where I is an nˆ n identity matrix.

E(uu 1) = E



u1
u2
...
un

(u1 u2 . . .un

)


=


E(u2

1) E(u1u2) . . . E(u1un)
E(u2u1) E(u2

2) . . . E(u2un)
...

E(unu1) E(unu2) . . . E(u2
n)

 = σ2I
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The matrix form III
4 The OLS estimation

β̂ = (X 1X)´1X 1y

cov(β̂) = σ2(X 1X)´1

û 1û = (y´ Xβ̂) 1(y´ Xβ̂) = y 1y´ 2β̂X 1y+ β̂ 1X 1Xβ̂

= y 1y´ β̂X 1y =
ÿ

û2
i

σ̂2 = û 1û/(n´ k) = (y 1y´ β̂X 1y)/(n´ k) Verify this!

Details can be found in Appendix C: Matrix approach)
5 The hat matrix

In the matrix form, we have the fitted value ŷ = Xβ̂. We then have

ŷ = Xβ̂

= X(X 1X)´1X 1y

= [X(X 1X)´1X 1]y

= Hy
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The matrix form IV

where H is the so-called hat matrix.
6 Some properties of the hat matrix

• The hat matrix is also called projection matrix— it maps the observed vector
(y) to the fitted value (ŷ).

• The hat matrix is symmetric (H 1 = H) and idempotent (H2 = H) in the linear
regression (verify this!).

• The trace of the hat matrix equals the number of independent parameters (k)
of the linear model which is the rank of covariate matrix (X).

7 Predictions
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Estimation with method of moments I
ï A two-variable example

• In the population regression function, we see that the error term u has
zero expected value E(u) = 0 and that the covariance between X and u is
zero Cov(X,u) = 0 which implies

E(u) = 0
E(Xu) = 0

• In terms of the observable variables x and y and the unknown parameters β0
and β1 , the above equation can be written as

E(Y ´ β0 ´ β1X) = 0
E[X(Y ´ β0 ´ β1X)] = 0
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Estimation with method of moments II
ï A two-variable example

• The above equations can be used to obtain good estimators of β0 and β1 if
we change the expectation with its sample mean by given a sample of data

1
n

ÿ

(Yi ´ β̂0 ´ β̂1Xi) = 0

1
n

ÿ

[Xi(Yi ´ β̂0 ´ β̂1Xi)] = 0

• These equations can be solved for β̂0 and β̂1.
1 From the first equation we have β̂0 = Ȳ ´ β̂1X̄. And plugging it into the

second equation yields

1
n

ÿ

[Xi(Yi ´ Ȳ ´ β̂1X̄´ β̂1Xi)] = 0
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Estimation with method of moments III
ï A two-variable example

which gives

β̂1 =

n
ř

i=1
(Xi ´ X̄)(Yi ´ Ȳ)

n
ř

i=1
(Xi ´ X̄)2

2 Now we go back to the first equation and solve the intercept.
• This is the method of moments approach to parameter estimation.

1 It relies on the sample average as an unbiased estimator of the population
average and the sample variance as an unbiased estimator of the population
variance.

2 The only assumption needed to compute the estimates for a particular sample
X should not be a constant, which is obvious.

• Generally, method of moments estimation is to replace the population
moment with its sample counterpart as follows.

• The parameter θ is shown to be related to some expected value in the
distribution of Y, usually E(Y) or E(Y2).
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Estimation with method of moments IV
ï A two-variable example

• Suppose, for example, that the parameter of interest θ, is related to the
population mean as θ = g(µ) for some function g.

• Because the sample average Ȳ is an unbiased and consistent estimator of µ,
it is natural to replace µ with Ȳ, which gives us the estimator g(Ȳ) of θ.

• The estimator g(Ȳ) is consistent for θ, and if g() is a linear function of θ,
then g(Ȳ) is unbiased as well.

• The matrix form of method of moments in linear regression:
http://russell.vcharite.univ-mrs.fr/GMMboot/chp09big.pdf
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Multiple Regression Inference
ï Hypothesis testing

1 For a model with more than two regressors,

Yi = β1 + β2X2i + ... + βkXki + ui

2 Testing individual regression coefficients: the t test
H0 : βi = 0
Ha : βi ‰ 0 or Ha : βi ą 0, or Ha : βi ă 0

3 Testing overall significance: the t test
H0 : β2 = β3 = ... = βk = 0
Ha : otherwise

1 Method A: Do a lot of t test
2 Method B: ANOVA table (the F test)
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Multiple Regression Inference
ï Hypothesis testing: Testing overall significance

Source of Variation SS df MSS
ESS

ř

ŷ2
i =

ř

(Ŷi ´ Ȳ)
2 k´ 1

ř

ŷ2
i/(k´ 1)

RSS
ř

û2
i =

ř

(Yi ´ Ŷi)
2 n´ k

ř

û2
i/(n´ k)

TSS
ř

y2
i =

ř

(Yi ´ Ȳ)
2 =

ř

y2
i +

ř

û2
i n´ 1

where k is number of parameters in the unrestricted model.

F =
ESS/dfESS

RSS/dfRSS
=?

=
n´ k

k´ 1
R2

1´ R2
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Multiple Regression Inference
ï Testing the equality of two regression coefficients

1 For a model with more than two regressors,

Yi = β1 + β2X2i + ... + βkXqi + ui

2 We want to test e.g.
H0 : β3 = β5 or β3 ´ β5 = 0

3 Under the classical assumption, we have

t =
(β̂3 ´ β̂5)´ (β3 ´ β5)

se(β̂3 ´ β̂5)

notice that

var(β̂3 ´ β̂5) = var(β̂3) + var(β̂5)´ 2cov(β̂3, β̂5).

4 Then just do the usual t test.
5 Question: What are the degrees of freedom in your t statistic?
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Multiple Regression Inference
ï The general F test

1 For a model with more than two regressors,

Yi = β1 + β2X2i + ... + βkXqi + ui

2 We want to test e.g.
H0 : β2 = β3 or
H0 : β3 + β4 + β5 = 3

3 If we assume the big model as unrestricted model (UR) and the restricted
model (R) where H0 satisfied.

4 For the two models,

F =
(RSSR ´ RSSUR)/m

RSSUR/(n´ k)
=

(
ř

û2
R ´

ř

û2
UR)/m

ř

û2
UR/(n´ k)

=
(R2

UR ´ R
2
R)/m

(1´ R2
UR)/(n´ k)

„ F(m,n´ k)

where m = number of linear restrictions.
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Likelihood Ratio, Wald and Lagrange Multiplier Tests I

• The likelihood ratio (LR) test is based on the maximum likelihood (ML)
principle.

• Under the assumption that the disturbances ui are normally distributed, we
showed that, for the two-variable regression model, the OLS and ML
estimators of the regression coefficients are identical, but the estimated error
variances are different. The same is true in the multiple regression case.

• To illustrate the LR test, consider the three-variable regression model

Yi = β1 + β2X2i + β3X3i + ui

You will be able to write down the likelihood function as

logL = ´nlog(σ)´
n

2 log(2π)´
1

2σ2

ÿ

(Yi ´ β1 ´ β2X2i ´ β3X3i)
2
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Likelihood Ratio, Wald and Lagrange Multiplier Tests II

• The null hypothesis: β3 = 0, which gives the log likelihood function will then
be

logL = ´nlog(σ)´
n

2 log(2π)´
1

2σ2

ÿ

(Yi ´ β1 ´ β2X2i ´ β3X3i)
2

which is known as the restricted log-likelihood function (RLLF) because it
is estimated with the restriction that a priori β3 is zero, whereas the previous
is known as the unrestricted log likelihood function (ULLF).

• The LR test obtains the following test statistic

λ = 2(ULLF´ RLLF)

that follows the chi-square distribution with r degrees of freedom equal to the
number of restrictions imposed by the null hypothesis.
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Likelihood Ratio, Wald and Lagrange Multiplier Tests III

• Letting RRSS and URSS denote the restricted and unrestricted residual sums
of squares. The LR test statistic can also be expressed as

´2log(λ) = n(log(RRSS)´ log(URSS)

which is distributed as χ2 with r degrees of freedom where r is the number of
coefficients ommitted from the original model.

• The basic idea behind the LR test is simple:
• If the a priori restriction(s) are valid, the restricted and unrestricted (log) LF

should not be different, in which case λ in will be zero.
• But if that is not the case, the two LFs will diverge.
• And since in a large sample we know that λ follows the chi-square distribution,

we can find out if the divergence is statistically significant, say, at a 1 or 5
percent level of significance. Or else, we can find out the p value of the
estimated λ.
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Likelihood Ratio, Wald and Lagrange Multiplier Tests IV

• Letting RRSS and URSS denote the restricted and unrestricted residual sums
of squares. We can have the Wald statistic

(n´ k)(RRSS´URSS)

URSS

which is distributed as χ2 with r degrees of freedom.
• Furthermore,

(n´ k+ r)(RRSS´URSS)

RRSS

where k is the number of regressors in the unrestricted model is known as the
Lagrange Multiplier statistic which also follows χ2 distribution with r
degrees of freedom.

• Comparison of the three methods
• All three are asymptotically equivalent (they give the similar answers in large

samples).
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Likelihood Ratio, Wald and Lagrange Multiplier Tests V

• But in small samples, the relationship among three test statistics are

Wald ą Likelihood Ratio ą Lagrange Multiplier

That means in small samples, a hypothesis can be rejected by the Wald but
not rejected by Lagrange Multiplier.

• The three test statistics can be applied to test nonlinear hypothesis in linear
models.

• They can be used for testing restrictions on variance-covariance matrices.
• They can also be applied to the models where the error term is not normally

distributed.
• The choice of the three test statistics depends on the computational

convenience
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Take home questions

1 Read the partial correlation coefficients p. 213.
2 Read the Chow test p. 254.
3 Verify the BLUE property of OLS estimator with matrix form (Appendix

CA.4)
4 Compare the three approaches in parameter estimation: OLS, MLE and

method of moments.
5 Exercises (Set 3): 7.10, 7.14, 7.20, 8.2, 8.3, 8.6, 8.7, 8.11, 8.19, 8.20,

C.10(p.863)
6 Redo Example 8.3 with maximum likelihood estimation and carry out

likelihood ratio test, Wald test, and Lagrange Multiplier test.
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