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What we have learned last time...

• Population regression line
• Sample regression line
• The term ui

• We wished to find β̂1 and β̂2 so that ûi can be minimal.
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Today we are going to learn...

1 To find the best β1 and β2

2 The properties of ordinary least squares

3 The assumptions for the linear regression model

4 Standard errors of OLS

5 Determination of Goodness of fit

6 Maximum likelihood estimation for regression models
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To find the best β1 and β2
ï The problem

• We knew the population regression function is not easy to have.
• Instead we estimate it from the sample regression function, i.e.

Yi = β̂1 + β̂2Xi + ûi

• We wish to have small ûi for i = 1, 2, ...,n
• It’s difficult to have a fair solution: your regression line resulting some ûi are

very small, but others are big, which is unfair.
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To find the best β1 and β2 I
ï Using the ordinary least squares method

• Recall that the difference between the population mean Yi and the estimated
conditional mean Ŷi

ûi =Yi ´ Ŷi

=Yi ´ β̂1 ´ β̂2Xi

• One possible solutions it to let
n
ř

i=1
û2
i to be a minimal so that every

observation is considered. Is this good and why not to minimize
řn

i=1 u
2
i?

• This yields to minimize
n

ÿ

i=1
û2
i =

n
ÿ

i=1
(Yi ´ Ŷi)

2

=
n

ÿ

i=1
(Yi ´ β̂1 ´ β̂2Xi)

2
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To find the best β1 and β2 II
ï Using the ordinary least squares method

• This is straightforward by applying differential calculations (details in
Appendix 3A), i.e.

B
řn

i=1 û
2
i

Bβ̂1
=´ 2

n
ÿ

i=1
(Yi ´ β̂1 ´ β̂2Xi) = 0

B
řn

i=1 u
2
i

Bβ̂2
=´ 2

n
ÿ

i=1
(Yi ´ β̂1 ´ β̂2Xi)Xi = 0

• Simplify these equations we have (how ?)

n
ÿ

i=1
Yi =nβ̂1 + β̂2

n
ÿ

i=1
Xi

n
ÿ

i=1
YiXi =β̂1

n
ÿ

i=1
Xi + β̂2

n
ÿ

i=1
X2
i

• Can you obtain β̂1 and β̂2 now?
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To find the best β1 and β2 III
ï Using the ordinary least squares method

• That is easy, from the first equation, we have

β̂1 =
1
n

n
ÿ

i=1
Yi ´ β̂2

1
n

n
ÿ

i=1
Xi = Ȳ ´ β̂2X̄

• Plug this result into the second equation in previous slides
n

ÿ

i=1
YiXi =(Ȳ ´ β̂2X̄)

n
ÿ

i=1
Xi + β̂2

n
ÿ

i=1
X2
i

• Solve β̂2

β̂2 =

n
ř

i=1
YiXi ´ Ȳ

n
ř

i=1
Xi

n
ř

i=1
X2
i ´ X̄

n
ř

i=1
Xi

=

n
n
ř

i=1
YiXi ´ nȲ

n
ř

i=1
Xi

n
n
ř

i=1
X2
i ´ nX̄

n
ř

i=1
Xi

=

n
n
ř

i=1
YiXi ´

n
ř

i=1
Yi

n
ř

i=1
Xi

n
n
ř

i=1
X2
i ´ (

n
ř

i=1
Xi)2

=

n
ř

i=1
(Xi ´ X̄)(Yi ´ Ȳ)

n
ř

i=1
(Xi ´ X̄)2

.Verify this!
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To find the best β1 and β2 IV
ï Using the ordinary least squares method

• If we let xi = Xi ´ X̄ and yi = Yi ´ Ȳ, then the previous result can be
written as

β̂2 =

řn
i=1 xiyi

řn
i=1 x

2
i

• Further more (homework!),

β̂2 =

řn
i=1 xiyi

řn
i=1 x

2
i

=

řn
i=1 xiYi

řn
i=1 X

2
i ´ nX̄

2
=

řn
i=1 Xiyi

řn
i=1 X

2
i ´ nX̄

2

and

β̂1 = Ȳ ´ X̄

řn
i=1 xiyi

řn
i=1 x

2
i

.

• Have you noticed that, the OLS does not depend on the assumption on ui?
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The properties of ordinary least squares (OLS)

• The regression line finally can be expressed as Ŷi = β̂1 + β̂2Xi where β̂1 and
β̂2 are determined from previous slides.

• The regression line goes through the sample means of Y and X, i.e.,
Ȳ = β̂1 + β̂2X̄ holds. (Why?)

• The mean of our estimated Y, ( 1
n

ř

Ŷi) is equal to the mean of Y, ( 1
n

ř

Yi),
because (verify this!)

1
n

ÿ

Ŷi =
1
n

ÿ

(β̂1 + β̂2Xi) =
1
n

ÿ

(Ȳ ´ β̂2X̄+ β̂2Xi)

=
1
n

ÿ

Ȳ ´ β̂2
1
n

ÿ

(X̄´ Xi) =
1
n

ÿ

Ȳ =
1
n

ÿ

Yi.

• The mean of the residuals ûi is zero which is directly verified by an equation
in slide 6. (which one?)
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The properties of ordinary least squares (OLS)

• It is easy to have yi = β̂2xi + ûi. Think about the equation in the first
property and Ȳ = β̂1 + β̂2X̄+ ûi. (How?)

• The residuals ûi are uncorrelated with the predicted Yi. Just show that
ř

ûiŷi = 0. (How?)
• The residuals ûi are uncorrelated with Xi. Just show that

ř

ûiXi = 0.
(How?)

• The coefficient β2 is simply the sample covariance between X and Y divided
by the sample variance of X. (Why?)
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The assumptions for the linear regression model

1 The linear in linear regression model means linear in the parameters.
2 The regressor X is fixed (not random); X and the error term are

independent, i.e., cov(Xi,ui) = 0.
3 Zero mean value of disturbance ui, i.e., E(ui|Xi) = 0
4 Homoscedasticity (constant variance of ui), i.e.,
var(ui) = E(ui ´ E(ui|Xi))

2 = E(u2
i |Xi) = σ

2.
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The assumptions for the linear regression model

1 No autocorrelation between the disturbances, i.e., cov(ui,uj|Xi,Xj) = 0 for
i ‰ j.

2 The number of observations n must be greater than the number of
parameters.

3 The X values must not be all the same. (What will happen if all Xi are
the same? )
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Time to think about the assumptions again

1 Are these too realistic?
2 Can our data satisfy all of those assumptions?
3 What will happen if we break some of them?
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Standard errors of OLS

1 Given the Gaussian assumptions, it is shown (Appendix 3A) that

var(β̂2) =
σ2

ř

x2
i

ñ se(β̂2) =
σ

a

ř

x2
i

var(β̂1) =

ř

X2
i

n
ř

x2
i

σ2 ñ se(β̂1) =

d

ř

X2
i

n
ř

x2
i

σ

2 The variance of ui, (σ2) is estimated by σ̂2 =
ř

û2
i

n´2 , where n´ 2 is known as
the degrees of freedom, and

ř

û2
i is called the residual sum of squares

(RSS). Further more σ̂ =

b

ř

û2
i

n´2 is called the standard error (se) of the
regression.

3 The parameters β̂1 and β̂2 are dependent on each other, that is (Section
3A.4)

cov(β̂1, β̂2) = ´X̄ ¨ var(β̂2) = ´X̄
σ2

ř

x2
i
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Determination of Goodness of fit
ï The idea

1 The total sum of squares (TSS) is the variation of Y about there sample
mean, i.e.,

ÿ

y2
i =

ÿ

ŷ2
i +

ÿ

û2
i (verify this!)

ÿ

(Yi ´ Ȳ)
2 =

ÿ

(Ŷi ´ Ȳ)
2 +

ÿ

û2
i

TSS =ESS + RSS

2 A good model should be ESSÑ TSS, RSSÑ 0 (but this is not the sufficient
condition).
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Determination of Goodness of fit
ï The goodness of fit coefficient, r2

1 Define the coefficient of determination of goodness of fit r2 (0 ď r2 ď 1) as

r2 =
ESS

TSS
= 1´ RSS

TSS

2 Properties of r2

1 r2 can be linked with β̂2: r2 = β̂2
2

ř

x2
i

ř

y2
i

2 r2 can be linked with sample variance of X and Y: r2 = β̂2
2
S2
x

S2
y

3 The coefficient of correlation for X and Y is actually r = ˘
?
r2

1 Its traditional formula is r =
ř

xiyi?
ř

x2
i

ř

y2
i

2 correlation can be positive and negative, ´1 ď r ď 1
3 rxy = ryx.
4 Correlation coefficients can only determine linear correlation.
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Maximum likelihood estimation
ï Likelihood function

• Given that ui „ N(0,σ2) for i = 1, ...,n, the Yi „ N(βo + β1Xi,σ2).
likelihood function for the linear regression model is

n
ź

i=1
f(Yi,Xi,β0,β1,σ2)

where f()̇ is the normal density function.
• However the log likelihood function is more often used

n
ÿ

i=1
log f(Yi,Xi,β0,β1,σ2)

• Do you know why we write it in this way?
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Maximum likelihood estimation for linear regression

• Assume you want to make a regression model

yi = β0 + β1xi + ui

where ui „ N(0,σ2) and the normal density is of the form

f(x,µ,σ) = 1
σ
?

2π
e´

(x´µ)2
2σ2

• What is the (log) likelihood function?
• What are the unknown parameters?
• How do we estimate the parameters?

• Write down the log likelihood function with respect to the unknown
parameters.

• Make first order derivatives with respect to unknown parameters
• If there is an analytical solution, just solve the linear system. Otherwise, or use

an optimization algorithm to find the estimates of the unknown parameters for
the log likelihood.
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Maximum likelihood estimation for linear regression

• Remember that the likelihood method requires a distributional assumption of
the error term. However, OLS does not.

• Under the Gaussian assumptions, the coefficient estimated via maximum
likelihood method is identical to OLS.

• However, the variance estimator of σ2 is biased,

σ̂2 =

ř

û2
i

n

• Discussion is biasness always a bad boy?
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The correlation coefficient, r
ï A visual example
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Take home questions

1 Verify the properties in slides 9 and 10.
2 Do the numerical example in the end of Chapter 3 with Excel or a calculator.
3 Exercises (S1): 2.7, 2.13, 3.1, 3.6, 3.7, 3.14, 3.16, 3.19
4 How do you appliy maximum likelihood method to find the coefficients

when there is no analytical solution?
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