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Today we are going to learn...

1 The lag operators

2 The difference operators

3 Linear models for stationary time series

4 Stationary

5 White noise
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The lag operators

• Suppose Xt is the GDP for past ten years (t = 1, 2, ..., 10).
• The Xt´1 is called the GDP with a lapse of time (i.e. a lag).
• In time series analysis, the lag operator or backshift (L is the notation)

operator operates on an element of a time series to produce the previous
element.

• Given some time series X = tX1,X2, . . . u

• then LXt = Xt´1 for all t ą 1
• or equivalently Xt = LXt+1 for all t ě 1
• and this also works L´1Xt = Xt+1
• and LkXt = Xt´k.

• How many lags can we have maximumly?
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Why lags?

• Psychological reasons
• Those who become instant millionaires by winning lotteries may not change the

lifestyles intermediately.
• People do not change their consumption habits immediately following a price

decrease or an income increase.
• Technological reasons

• We obtained the data from the stock market maybe always 5 seconds behind real
time due to technological reasons.

• The data obtain from authorities maybe always delayed due to confidential reasons.
• Institutional reasons

• Employers often give their employees a choice among several health insurance
plans, but once a choice is made, an employee may not switch to another plan for
at least 1 year.

• You are only allowed to take the re-exam next year if you fail this time.
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The difference operator

• Assume your yearly salaries are Xt, how much do you earn compared to previous
year?

• That should be ∆tXt = Xt ´ Xt´1 which is called the first difference operator
in time series analysis.

• It could be written in terms of lag operators ∆tXt = Xt ´ Xt´1 = (1 ´ L)Xt

• Similarly, the second difference operator works as follows:

∆(∆Xt) = ∆Xt ´ ∆Xt´1

∆2Xt = (1 ´ L)∆Xt

∆2Xt = (1 ´ L)(1 ´ L)Xt

∆2Xt = (1 ´ L)2Xt .
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Autocovariance and Autocorrelation Functions

• The covariance between yt and its value at another time period, say, yt+k is
called the autocovariance at lag k,

γk = Cov(yt,yt+k) = E((yt ´ µ)(yt+k ´ µ))

• The collection of the values of γk, k = 0, 1, 2, ... is called the autocovariance
function.

• The autocovariance at lag k = 0 is just the variance of the time series;
• The autocorrelation coefficient at lag k is

ρk =
Cov(yt,yt+k)
Var(yt)

=
γk

γ0

• Note that by definition ρ0 = 1.
• The collection of the values of ρk. k = 0.1.2.... is called the autocorrelation

function (ACF).
• The ACF is independent of the scale of measurement of the time series.
• The autocorrelation function is symmetric around zero ρk = ρ´k.
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Sample autocorrelation function particial autocorrelation I
• It is necessary to estimate the autocovariance and autocorrelation functions from

a time series of finite length. The usual estimate of the autocovariance function is

ck = γ̂k =
1
T

T´k
ÿ

t=1
(yt ´ ȳ)(yt+k ´ ȳ)

• The autocorrelation function is estimated by the sample autocorrelation
function

rk = ρ̂k =
ck

c0
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Sample autocorrelation function particial autocorrelation II

• The partial correlation is the correlation between two variables after being
adjusted for a common factor that may be affecting them.

• The partial correlation between X and Y after adjusting for Z is defined as

Corr(X´ X̂, Y ´ Ŷ)

where X̂ = a1 + b1Z and Ŷ = a2 + b2Z

• The partial autocorrelation function between yt and yt´k is the
autocorrelation between yt and yt´k after adjusting for yt´1, yt´2,...,yt´k+1
and yt´k.
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Linear models for stationary time series

• Consider a linear operation from one time series xt to another time series yt

yt =
∞
ÿ

i=´∞ψixt´i
which is called a linear filter.

• The linear filter should have the flowing properties
• Time-invariant: ψ do not depend on time.
• Stable if

ř∞
i=´∞ |ψi| ă ∞
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Stationary

• A stationary time series exhibits similar ”statistical behavior” in time and this
is often characterized as a constant probability distribution (in terms of mean,
variance, skewness, kurtosis, or even higher moments) in time.

• If we only consider the first two moments of the time series, we are talking about
weak stationarity which is defined

• The expected value of the time series does not depend on time.
• The autocovariance function defined as Cov(yt,yt´k) for any lag k is only a

function of k and not time t.
• If the time series is not stationary, it can be examined by observing

autocorrelation function (ACF) and particial autocorrelation function
(PACF).
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Example: Calculating ACF with R.
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White noise

• If a time series consists of uncorrelated observations and has constant variance.
we say that it is white noise.

• If in addition, the observations in this time series are normally distributed, the
time series is Gaussian white noise.

• If a time series is white noise, the distribution of the sample autocorrelation
coefficient at lag k in large samples is approximately normal with mean zero and
variance 1/T .
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Stationary time series

• Many time series do not exhibit a stationary behavior.
• The stationarity is in fact a rarity in real life.
• However it provides a foundation to build upon since (as we will see later on) if

the time series in not stationary, its first difference (yt ´ yt´1) will often be
stationary.
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Stationary time series

• For a time-invariant and stable linear filter and a stationary input time series xt

yt =
∞
ÿ

i=´∞ψixt´i
with µx = E(xt) and γx(k) = Cov(xt, xt+k).

• The output time series yt is also a stationary time series where

E(yt) = µy =
∞
ÿ

´∞ψiµx
γy(k) = Cov(yt,yt+k) =

∞
ÿ

´∞ψiψjγx(i´ j+ k)
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Stationary time series

• The following stable linear process with white noise time series, εt,

yt = µ+
∞
ÿ

´∞ψiεt´i
is also stationary where εt has E(εt) = 0 and

γε(k) = Cov(εt, εt+k) =
#

σ2 k = 0
0 otherwise

• The autocovariance function of yt is

γy(k) = Cov(yt,yt+k) =
∞
ÿ

i=0

∞
ÿ

j=0
ψiψjγε(i´ j+ k)

= σ2
∞
ÿ

i=0
ψiψi+k
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Reading material

Introduction to Time Series Analysis and Forecasting by Montgomery, Jennings
and Kulahci (Chapter 5)

Available at http://feng.li/files/ec2013fall/ARIMA-Models.pdf
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