
CHAPTER 5 

Autoregressive Integrated Moving 
Average (ARIMA) Models 

All models are wrong, some are useful. 

GEORGE E. P. BOX, British statistician 

5.1 INTRODUCTION 

In the previous chapter, we discussed forecasting techniques that, in general, were 
based on some variant of exponential smoothing. The general assumption for these 
models was that any time series data can be represented as the sum of two distinct com
ponents: deterministic and stochastic (random). The former is modeled as a function 
of time whereas for the latter we assumed that some random noise that is added on the 
deterministic signal generates the stochastic behavior of the time series. One very im
portant assumption is that the random noise is generated through independent shocks 
to the process. In practice, however, this assumption is often violated. That is, usually 
successive observations show serial dependence. Under these circumstances, fore
casting methods based on exponential smoothing may be inefficient and sometimes 
inappropriate because they do not take advantage of the serial dependence in the obser
vations in the most effective way. To formally incorporate this dependent structure, in 
this chapter we will explore a general class of models called autoregressive integrated 
moving average models or ARIMA models (also known as Box-Jenkins models). 

5.2 LINEAR MODELS FOR STATIONARY TIME SERIES 

In statistical modeling, we are often engaged in an endless pursuit of finding the 
ever elusive true relationship between certain inputs and the output. As cleverly put 
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by the quote of this chapter, these efforts usually result in models that are nothing 
but approximations of the "true" relationship. This is generally due to the choices 
the analyst makes along the way to ease the modeling efforts. A major assumption 
that often provides relief in modeling efforts is the linearity assumption. A linear 
filter, for example, is a linear operation from one time serie~ Xc to another time 
series Yc. 

+x 

Yc = L(Xc) = L l/I;Xc-i (5.1) 
i=-x 

with t = ... , -I, 0, 1, .... In that regard the linear filter can be seen as a "process·· that 
converts the input, Xc, into an output, Yc. and that conversion is not instantaneous but 
involves all (present, past, and future) values of the input in the form of a summation 
with different "weights", { l/J;}, on each Xc. Furthermore, the linear filter in Eq. ( 5.1) 
is said to have the following properties: 

1. Time-invariant as the coefficients { l/1;} do not depend on time. 

2. Physically realizable if l/1; = 0 fori < 0; that is, the output r 1 is a linear function 
of the current and past values of the input: Yc = l/Joxr + l/11 Xc-1 + · · ·. 

3. Stable if L:i=~x )l/1;) < oo. 

In linear filters, under certain conditions. some properties such as stationarity 
of the input time series are also reflected in the output. We discussed stationarity 
previously in Chapter 2. We will now give a more formal description of it before 
proceeding further with linear models for time series. 

5.2.1 Stationarity 

The stationarity of a time series is related to its statistical properties in time. That is. 
in the more strict sense, a stationary time series exhibits similar "statistical behavior" 
in time and this is often characterized as a constant probability distribution in time. 
However, it is usually satisfactory to consider the first two moments of the time 
series and define stationarity (or weak stationarity) as follows: (I) the expected 
value of the time series does not depend on time and (2) the autocovariance function 
defined as Cov(y1 • Yr+k) for any lag k is only a function of k and not time: that is. 
y, (k) = Cov (Yc, Yc+k ). 

In a crude way, the stationarity of a time series can be determined by taking arbitrary 
"snapshots" of the process at different points in time and observing the general behav
ior of the time series. If it exhibits "similar" behavior, one can then proceed with the 
modeling efforts under the assumption of stationarity. Further preliminary tests also 
involve observing the behavior of the autocorrelation function. A strong and slowly 
dying ACF will also suggest deviations from stationarity. Better and more method
ological tests of stationarity also exist and we will discuss some of them later in this 
chapter. Figure 5.1 shows examples of stationary and nonstationary time series data. 
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FIGURE 5.1 Realizations of (a) stationary, (b) near nonstationary. and (c) nonstationary processes. 

5.2.2 Stationary Time Series 

For a time-invariant and stable linear filter and a stationary input time series x 1 with 

fl., = E(x1 ) and Yx (k) = Cov(x1 , x 1+k), the output time series y1 given in Eq. (5.1) is 

also a stationary time series with 

fly 

-oo 
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and 

X X 

Cov(y1 • Yr+k) = y, (k) = L L 1/1;1/IJYr (i- j + k) 
i=-Xj=-X 

It is then easy to show that the following stable linear process with white noise time 
series, E1 , is also stationary: 

X 

Yr = 11 + L 1/I;Er-i 
i=O 

where E1 represents the independent random shocks with E (E1 ) = 0, and 

iflz = 0 
if h =f. 0 

So for the autocovariance function of y1 , we have 

= = 
y, (k) = L L 1/l;l/J)Yc (i- j + k) 

i=O )=0 

X 

= a2 L 1/1;1/l;+k 
i=O 

(5.2) 

(5.3) 

We can rewrite the linear process in Eq. (5.2) in terms of the backshift operator, 
B, as 

X 

= 11 + L 1/1; BiEr 
i=O 

=IJI(B) 

= 11 + W (B)E1 

(5.4) 

This is called the infinite moving average and serves as a general class of models 
for any stationary time series. This is due to a theorem by Wold [ 1938] and basically 
states that any nondeterministic weakly stationary time series y1 can be represented 
as in Eq. (5.2), where { 1/1;} satisfy L~o 1/1? < oo. A more intuitive interpretation of 
this theorem is that a stationary time series can be seen as the weighted sum of the 
present and past random "disturbances." For further explanations see Yule [ 1927] and 
Bisgaard and Kulahci [2005]. It can also be seen from Eq. (5.3) that there is a direct 
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relation between the weights { 1/J;} and the autocovariance function. In modeling a 
stationary time series as in Eq. (5.4), it is obviously impractical to attempt to estimate 

the infinitely many weights given in { 1/J;}. Although very powerful in providing a 

general representation of any stationary time series, the infinite moving average model 
given in Eq. (5.2) is useless in practice except for certain special cases: 

1. Finite order moving average (MA) models where, except for a finite number of 

the weights in { 1/J; }, they are set to 0. 

2. Finite order autoregressive (AR) models, where the weights in { 1/J;} are gener

ated using only a finite number of parameters. 

3. A mixture of finite order autoregressive and moving average models (ARMA). 

We shall now discuss each of these classes of models in great detail. 

5.3 FINITE ORDER MOVING AVERAGE (MA) PROCESSES 

In finite order moving average or MA models, conventionally 1/Jo is set to I and the 

weights that are not set to 0 are represented by the Greek letter () with a minus sign 

in front. Hence a moving average process of order q(MA(q)) is given as 

(5.5) 

where {E1 } is white noise. Since Eq. (5.5) is a special case of Eq. (5.4) with only finite 

weights, a MA(q) process is always stationary regardless of values of the weights. In 

terms of the backward shift operator, the MA(q) process is 

Yr =fl+(l-8lB-···-8qB")Er 

= fl + (1- ~8;8;) Er (5.6) 

= fl + B(B)Er 

where 0) (B) = I - Lf= 1 8; B;. 

Furthermore, since {E1 } is white noise, the expected value of the MA(q) process is 

simply 

(5.7) 
=fl 

and its variance is 

2 ( 2 2) = (J I +()I + ... + ()" 
(5.8) 



236 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS 

Similarly, the autocovariance at lag k can be calculated from 

Yy(k) = Cov(y,, Yr+k) 

= E[(Er - eiE'r-1 - ... - OqE'r-q)(E't+k - OIE'r+k-1 - ... - BqEr+k-q)] (5.9) 

=I a 2
(-ek + elek+l + ... + eq-kOq). k =I, 2 .... 'q 

0, k > q 

From Eqs. (5.8) and (5.9), the autocovariance function of the MA(q) process is 

k = I. 2 ..... q 
(5.10) 

This feature of the ACF is very helpful in identifying the MA model and its 
appropriate order as it "cuts off' after lag q. In real life applications, however, the 
sample ACF, r (k), will not necessarily be equal to zero after lag q. It is expected to 
become very small in absolute value after lag q. For a data set of N observations, this 
is often tested against ±2/ ..fN limits, where I I ..fN is the approximate value for the 
standard deviation of the ACF for any lag under the assumption of independence as 
discussed in Chapter 2. 

Note that a more accurate formula for the standard error of the kth sample auto
correlation coefficient is provided by Bartlett [ 1946] as 

where 

forpj #0 
forpj =0 

A special case would be white noise data for which Pj = 0 for all j's. Hence for 
a white noise process (i.e., no autocorrelation), a reasonable interval for the sample 
autocorrelation coefficients to fall in would be ±2/ ..fN and any indication otherwise 
may be considered as evidence for serial dependence in the process. 

5.3.1 The First-Order Moving Average Process, MA(l) 

The simplest finite order MA model is obtained when q = I in Eq. (5.5 ): 

(5.11) 
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For the first-order moving average or MA(l) model, we have the autocovariance 
function as 

Yy (0) = a 2 
( 1 + Bf} 

y, (!) = -B1a
2 

y, (k) = 0, k > 

(5.12) 

Similarly, we have the autocorrelation function as 

-e, 
Pv0) = --2 

· I +81 

p, (k) = 0, k > 

(5.13) 

From Eq. (5.13), we can see that the first lag autocorrelation in MA(l) is bounded as 

(5.14) 

and the autocorrelation function cuts off after lag 1. 
Consider, for example, the following MA(l) model: 

Yr = 40 + E1 + 0.8Er-l 

A realization of this model with its sample ACF is given in Figure 5.2. A visual 

inspection reveals that the mean and variance remain stable while there are some 

short runs where successive observations tend to follow each other for very brief 
durations, suggesting that there is indeed some positive autocorrelation in the data as 

revealed in the sample ACF plot. 
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FIGURE 5.3 A realization of the MA( l) process, y, = 40 + t:1 - 0.8t:1_ 1. 

We can also consider the following model : 

Yr = 40 + £1 - 0.8£1_1 

A realization of this model is given in Figure 5.3. We can see that observations tend 
to osci llate successively. This suggests a negative autocorrelation as confirmed by the 
sample ACF plot. 

5.3.2 The Second-Order Moving Average Process, MA(2) 

Another useful finite order moving average process is MA(2), given as 

(5.15) 

The autocovariance and autocorrelation functions for the MA(2) model are given as 

and 

Yv (0) = a 2 (I + 8l + 8}) 
Yy ( I)= a 2 (-81 + 8182) 

Yy (2) = a 2 
( -{}2) 

Yy (k) = 0, k > 2 

-e, + e,e2 
Py(l)= 2 2 

I +81 +82 

-8z 
P.v (2) = ----=---

1 + e~ + e:? 
P.v (k) = 0, k > 2 

(5.16) 

(5.17) 
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Time Series Plot 

43 

~ l li ~ 42 

41 

r~~~N~WM(~~~ -40 

"' 39 

38 

37 

36 
10 20 30 40 50 60 70 80 90 100 

Time 

1.0 
0.8 

c: 0.6 
,g 0.4 
il 0.2 
:: 0.0 
8-o.2 
~--D.4 
ct-{).6 

-{).8 
-1.0 

239 

Autocorrelation Function 
(wih 5% significance limits for the autocorrelations) 

2 4 6 8 10 12 14 16 18 20 22 24 
Lag 

FIGURE 5.4 A realization of the MA(2) process, y, = 40 + c:, + 0.7cr-I - 0.28Er-2· 

Figure 5.4 shows the time series plot and the autocorrelation function for a realization 
of the MA(2) model: 

Note that the sample ACF cuts off after lag 2. 

5.4 FINITE ORDER AUTOREGRESSIVE PROCESSES 

As mentioned in Section 5.1, while it is quite powerful and important, Wold's de
composition theorem does not help us much in our modeling and forecasting efforts 
as it implicitly requires the estimation of the infinitely many weights, { 1/Ji}. In Section 
5.2 we discussed a special case of this decomposition of the time series by assuming 
that it can be adequately modeled by only estimating a finite number of weights and 
setting the rest equal to 0. Another interpretation of the finite order MA processes is 
that at any given time, of the infinitely many past disturbances, only a finite number 
of those disturbances "contribute" to the current value of the time series and that the 
time window of the contributors "moves" in time, making the "oldest" disturbance 
obsolete for the next observation. It is indeed not too far fetched to think that some 
processes might have these intrinsic dynamics. However, for some others, we may 
be required to consider the "lingering" contributions of the disturbances that hap
pened back in the past. This will of course bring us back to square one in terms of 

our efforts in estimating infinitely many weights. Another solution to this problem 
is through the autoregressive models in which the infinitely many weights are as
sumed to follow a distinct pattern and can be successfully represented with only a 
handful of parameters. We shall now consider some special cases of autoregressive 
processes. 
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5.4.1 First-Order Autoregressive Process, AR(l) 

Let us first consider again the time series given in Eq. (5.2): 

X 

Yr = /). + L 1/I;Er-i 

i=O 

X 

= /). + L 1/1; Bi E1 

i=O 

= /.1 + IJi (B) E: 1 

where IJ!(B) = "L::o 1/J; 8 1
. As in the finite order MA processes, one approach to 

modeling this time series is to assume that the contributions of the disturbances that 
are way in the past should be small compared to the more recent disturbances that 
the process has experienced. Since the disturbances are independently and identically 
distributed random variables, we can simply assume a set of infinitely many weights in 
descending magnitudes reflecting the diminishing magnitudes of contributions of the 
disturbances in the past. A simple and yet intuitive set of such weights can be created 
following an exponential decay pattern. For that we will set 1/11 = ¢1

, where 1¢1 < I 
to guarantee the exponential "decay." In this notation, the weights on the disturbances 
starting from the current disturbance and going back in past will be I. ¢. ¢ 2 • ¢ 3 , ... 

Hence Eq. (5.2) can be written as 

00 

=IJ.+ L¢1
Er-i 

i=O 

From Eq. (5.18), we also have 

We can then combine Eqs. (5.18) and (5.19) as 

= /.1 - ¢1J. +¢Yr-J + Er 
'--v-"' 

=8 

= 8 + ¢Yr-J + Er 

(5.18) 

(5.19) 

(5.20) 

where 8 = (I - ¢) /.1· The process in Eq. (5.20) is called a first-order autoregressive 
process, AR(l), because Eq. (5.20) can be seen as a regression of Yr on Yr- 1 and hence 
the term autoregressive process. 
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The assumption of 1¢1 < I that is made to make the weights decay exponentially 
in time also guarantees that L:::o I1J;; I < oo. Hence an AR( 1) process is stationary 
if 1¢1 < I. The mean of a stationary AR(l) process is 

8 
E(y,) = JL = --

1-¢ 
(5.21) 

The autocovariance function of a stationary AR( 1) can be calculated from 
Eq. (5.18) as 

I 
y(k) = a 2¢k__ fork= 0, I, 2, ... 

I- ¢2 

The variance is then given as 

I 
y(O) = a2 I - ¢2 

(5.22) 

(5.23) 

Correspondingly, the autocorrelation function for a stationary AR(l) process is 

given as 

(k) = y(k) = r~.k 
p y(O) '~'" for k = 0, 1, 2, ... (5.24) 

Hence the ACF for a stationary AR(l) process has an exponential decay form. 
A realization of the following AR(l) model, 

Yt = 8 + 0.8y,_l + Et 

is shown in Figure 5.5. As in the MA(l) model with () = -0.8, we can observe 
some short runs during which observations tend to move in the upward or downward 
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FIGURE 5.5 A realization of the AR(l) process, y, = 8 + 0.8y1-1 + E:1 . 
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FIGURE 5.6 A realization of the AR( I) process, y, = 8 - O.Srr-1 + F:1 . 

direction. As opposed to the MA( 1) model, however, the duration of these runs tends 
to be longer and the trend tends to linger. This can also be observed in the sample 
ACF plot. 

Figure 5.6 shows a realization of the AR(l) model y1 = 8- 0.8y1 _ 1 + E1 • We 
observe that instead of lingering runs, the observations exhibit jittery up/down move
ments because of the negative ¢ value. 

5.4.2 Second-Order Autoregressive Process, AR(2) 

In this section, we will first start with the obvious extension of Eq. (5.20) to include 
the observation Yt-2 as 

Yt = 8 + cPIYt-1 + ¢2Yt-2 + Et (5.25) 

We will then show that Eq. (5.25) can be represented in the infinite MA form and 
provide the conditions of stationarity for y1 in terms of ¢ 1 and ¢ 2• For that we will 
rewrite Eq. (5.25) as 

or 

<I>(B)y1 = 8 + E1 

Furthermore, applying <I>(B)- 1 to both sides, we obtain 

Yt = <I>(B)- 1 8 + <I>(B)- 1 
E1 

'-,.-' "-,.-' 

=Jl =ljJ(B) 

(5.26) 

(5.27) 

(5.28) 
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where 

and 

CXJ 

= J-L+ LlfiiEr-i 
i=O 

CXJ 

= 1-L + L o/;BiE1 

i=O 

"" 
<t>(B)-1 = L lj!; Bi = \II(B) 

i=O 
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(5.29) 

(5.30) 

We can use Eq. (5.30) to obtain the weights in Eq. (5.28) in terms of ¢ 1 and ¢2• For 
that, we will use 

<t>(B) \II(B) = 1 (5.31) 

That is, 

or 

o/o + Co/1 - ¢1 o/o) B + (o/z- ¢1 o/1 - ¢zo/o) 8 2 

+ · · · + (o/1 - ¢Jo/J-I ¢zo/J-2) B1 + · · · = I (5.32) 

Since on the right-hand side of the Eq. (5.32) there are no backshift operators, for 
<t>(B) \11(8) = 1, we need 

o/o = 1 

( o/1 - ¢Jo/o) = 0 

(o/J- ¢Jo/J-I- ¢zo/J-2) = 0 forallj = 2, 3, ... 

(5.33) 

The equations in (5.33) can indeed be solved for each lj!1 in a futile attempt to estimate 
infinitely many parameters. However, it should be noted that the o/j in Eq. (5.33) 
satisfy the second-order linear difference equation and that they can be expressed as 
the solution to this equation in terms of the two roots m 1 and m 2 of the associated 
polynomial 

(5.34) 
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If the roots obtained by 

<Pt ± )<t>? + 4¢2 
m 1,m2 = 

2 

satisfy lmtl. lm21 <I, then we have L~o 11/1;1 < oo. Hence if the roots m1 and m2 

are both less than I in absolute value, then the AR(2) model is stationary. Note that if 
the roots of Eq. (5.34) are complex conjugates of the form a ± i b, the condition for 
stationarity is that J a2 + b2 < I. 

Furthermore, under the condition that lmtl. 1m 2 I < I, the AR(2) time series, {y,}. 
has an infinite MA representation as in Eq. (5.28). 

Now that we have established the conditions for the stationarity of an AR(2) time 
series, let us now consider its mean, autocovariance, and autocorrelation functions. 
From Eq. (5.25), we have 

E(y,) = 8 + </>t E(y,_t) + </>zE (Yr-2) + 0 

J1 = 8 + <Pt J1 + </>z/1 

8 
==}Jl = ----

1- <l>t- </>2 
(5.35) 

Note that for I - ¢ 1 - ¢ 2 = 0, m = I is one of the roots for the associated polynomial 
in Eq. (5.34) and hence the time series is deemed nonstationary. The autocovariance 
function is 

y(k) = Cov(y,, Yr-d 

= Cov(8 + <f>tYr-1 + </>2Yr-2 + E,, Yr-kl 

= ¢,Cov(y,_,, Yr-d + </>2 Cov(.rr-2· Yr-kl + Cov(E,. Yr-kl 

= <f>,y(k -I) +</>2y(k- 2) + { ~
2 

Thus y(O) = ¢ 1 y(I) + ¢ 2y(2) + a 2 and 

if k = () 
if k > () 

y(k) = ¢ 1y(k- I)+ ¢2y(k- 2), k =I, 2, ... 

(5.36) 

(5.37) 

The equations in (5.37) are called the Yule-Walker equations for y(k). Similarly, we 
can obtain the autocorrelation function by dividing Eq. (5.37) by y(O): 

p(k) = <f>tp(k- l) + </>2p(k- 2). k = I. 2 .... (5.38) 
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The Yule-Walker equations for p(k) in Eq. (5.38) can be solved recursively as 

p(l) = ¢I P (0) +¢z p (-I) 
'-v-' ~ 

=I =p(l) 

cfJI 
1-¢2 

p (2) = cfJ1 p (I)+ cfJ2 

p (3) = ¢IP (2) + cfJzp (I) 
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A general solution can be obtained through the roots m 1 and m 2 of the associated 

polynomial m 2
- ¢ 1m- ¢2 = 0. There are three cases. 

Case 1. If m 1 and m 2 are distinct, real roots, we then have 

(5.39) 

where c1 and c2 are particular constants and can, for example, be obtained 

from p(O) and p(l). Moreover, since for stationarity we have lm 11, 1m 2 I < 1, in 
this case, the autocorrelation function is a mixture of two exponential decay 
terms. 

Case 2. If m 1 and m 2 are complex conjugates in the form of a ± i b, we then have 

p(k) = Rk [c1 cos (Ak) + c2 sin (Ak)], k = 0, I, 2, ... (5.40) 

where R = lm; I = J a2 + b2 and A is determined by cos (A) =a/ R, sin (A) = 

bj R. Hence we have a± ib = R [cos (A)± i sin (A)].Once again c1 and c2 are 

particular constants. The ACF in this case has the form of a damped sinusoid, 
with damping factor R and frequency A; that is, the period is 2rr /A. 

Case 3. If there is one real root m0 , m 1 = m 2 = m0 , we then have 

p (k) = (c 1 + c2k)m~ k = 0, I, 2 .... (5.41) 

In this case, the ACF will exhibit an exponential decay pattern. 

In case I, for example, an AR(2) model can be seen as an "adjusted" AR( I) model 

for which a single exponential decay expression as in the AR( 1) model is not enough to 

describe the pattern in the ACF, and hence an additional exponential decay expression 

is "added" by introducing the second lag term, y1_ 2 . 

Figure 5.7 shows a realization of the AR(2) process 

Yt = 4 + 0.4Yt-1 + O.S.Yt-2 + Ct 
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FIGURE 5.7 A rcalizauon of the AR(2) process. 1', = 4 + 0.4v, 1 + 0.5y, 2 + f,. 

Note that the roots of the associated polynomial of this model are real. Hence the 

ACF is a mixture of two exponential decay terms. 

Similarly, Figure 5.8 shows a realization of the following AR(2) proces!> 

Yr = 4 + 0.8_\'r-1- 0.5_\'r-2 + fr· 

For this process, the roots of the associated polynomial are complex conjugates. 

Therefore the ACF plot exhibits a damped sinusoid behavior. 

5.4.3 General Autoregressive Process, AR(p) 

From the previous two sections, a general, pth-order AR model is given as 

Yr = 8 + <PtYr- 1 + </J2Yr-2 + · · · + </J1,Yr-p + er 

where t:1 is white noise. Another representation of Eq. (5.42) can be given as 

<l>(B )yr = 8 + er 

where <l>(B) = I - ¢ 18- t/>2 8 2 - • · ·- ¢ 1,8". 

Autocorrelation Function 
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FIGURE 5.8 A realizauon of the AR(2) process, y, = 4 + O.Sy, 1 - 0.5y, 2 + £1 • 
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The AR(p) time series {y1 ) in Eq. (5.42) is stationary if the roots of the associated 
polynomial 

(5.44) 

are less than one in absolute value. Furthermore, under this condition, the AR(p) time 
series {y1 ) is also said to have an absolutely summable infinite MA representation 

00 

Yr = fl + IJ!(B) E:r = fl + L 1/JiE:t-i 
i=O 

where IJ!(B) = <t>(B)- 1 with L~o 11/Jil < oo. 

(5.45) 

As in AR(2), the weights of the random shocks in Eq. (5.45) can be obtained from 
<t>(B) IJ!(B) = I as 

1/!j = 0, j < 0 

1/lo = 1 (5.46) 

1/!.i - ¢I'ifJJ-I - ¢21/JJ-2 - · · · - </Jp 'ifJJ-p = 0 for all j = I, 2 .... 

We can easily show that, for stationary AR(p ), 

8 
E(vr) = fl = --------

~ 1 - </JJ - </J2 - · · · - </Jp 

and 

y(k) = Cov(yr, Yr-k) 

Thus we have 

= Cov(8 + ¢IYr-I + ¢2Yr-2 + · · · + </JpYt-p + E:r, Yr-k) 

p 

= L ¢iCov(Yr-i, Yr-d + Cov(cr, Yr-k) 
i=l 

p 

if k = 0 

if k > 0 

r co) = L: ¢iy(i) + u 2 

i=l 

(5.47) 

(5.48) 

(5.49) 



248 AUTOREGRESSIVE INTEGRATED MOVING AVER.\GE (ARIMA) MODELS 

By dividing Eq. (5.47) by y (0) fork > 0, it can be observed that the ACF of an 
AR(p) process satisfies the Yule-Walker equations 

l' 

p(k) = L_¢;p(k- i). k = 1. 2 .... (5.50) 
i=l 

The equations in (5.50) are pth-order linear difference equations. implying that 
the ACF for an AR(p) model can be found through the p roots of the associated 
polynomial in Eq. (5.44 ). For example, if the roots are all distinct and real. we have 

(5.51) 

where c 1, c2 , ••. , c, are particular constants. However, in general, the roots may 
not all be distinct or real. Thus the ACF of an AR(p) process can be a mixture of 
exponential decay and damped sinusoid expressions depending on the roots of 
Eq. (5.44). 

5.4.4 Partial Autocorrelation Function, PACF 

In Section 5.2, we saw that the ACF is an excellent tool in identifying the order of an 
MA(q) process, because it is expected to "cut off" after lag q. However, in the previous 
section, we pointed out that the ACF is not as useful in the identification of the order of 
an AR(p) process for which it will most likely have a mixture of exponential decay and 
damped sinusoid expressions. Hence such behavior, while indicating that the process 
might have an AR structure, fails to provide further information about the order 
of such structure. For that, we will define and employ the partial autocorrelation 
function (PACF) of the time series. But before that. we discuss the concept of partial 
correlation to make the interpretation of the PACF easier. 

Partial Correlation 
Consider three random variables X, Y, and Z. Then consider simple linear regression 
of Xon Z and Yon Z as 

and 

Y = a2 + b2Z 

Then the errors can be obtained from 

Cov(Z, X) 
where b1 = ---

Var(Z) 

Cov(Z. Y) 
where bo = _ ___:. _ ___:_ 

• Var(Z) 
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and 

Then the partial correlation between X and Y after adjusting for Z is defined as 
the correlation between X* andY*; corr(X*, Y*) = corr(X- X, Y- Y). That is, 
partial correlation can be seen as the correlation between two variables after being 
adjusted for a common factor that may be affecting them. The generalization is of 
course possible by allowing for adjustment for more than just one factor. 

Partial Autocorrelation Function 
Following the above definition, the partial autocorrelation function between 
y1 and Yt-k is the autocorrelation between y1 and Yt-k after adjusting for Yt-I, 

Yt-2• ... , Yt-k+I· Hence for an AR(p) model the partial autocorrelation function 
between )'1 and Yt-k fork > p should be equal to zero. A more formal definition can 
be found below. 

Consider a stationary time series model {y1 } that is not necessarily an AR process. 
Further consider, for any fixed value of k, the Yule-Walker equations for the ACF of 
an AR(p) process given in Eq. (5.50) as 

or 

k 

p(j) = LcPikPCi- i), j = 1, 2, ... 'k 
i=l 

p(l) = cPik + cP2kP0) + · · · + cPkkP(k- 1) 

p(2) = cPikPO) + cP2k + · · · + cPHP(k - 2) 

P (k) = cPikP (k-) + cP2kP(k - 2) + · · · + cPkk 

Hence we can write the equations in (5.52) in matrix notation as 

1 p(l) p(2) p(k- l) cPik 
p(l) 1 p(3) p(k - 2) cP2k 
p(2) p(l) 1 p(k - 3) cP3k 

p(k- I) p(k - 2) p(k - 3) cPkk 

or 

Pk¢k = Pk 

(5.52) 

p(l) 
p(2) 
p(3) (5.53) 

p(k) 

(5.54) 
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where 

I p(l) p(2) p(k- I) 
p(l) I p(3) p(k - 2) 

pk = p(2) p(l) I p(k - 3) 

p(k- I) p(k- 2) p(k- 3) 

</Jik p(l) 
¢2k p(2) 

¢k = ¢3k and Pk = p(3) 

</Ju p(k) 

Thus to solve for ¢k, we have 

¢k = PZ 1
Pk (5.55) 

For any given k, k = I, 2, ... , the last coefficient </Ju is called the partial autocor
relation of the process at lag k. Note that for an AR(p) process ¢kk = 0 fork > p. 
Hence we say that the PACF cuts off after lag p for an AR(p ). This suggests that the 
PACF can be used in identifying the order of an AR process similar to how the ACF 
can be used for an MA process. 

For sample calculations, ¢kk, the sample estimate of </Ju, is obtained by using 
the sample ACF, r(k). Furthermore, in a sample of N observations from an AR(p) 
process, ¢u fork > pis approximately normally distributed with 

A A 1 
E(</Ju) ~ 0 and Var(</Ju) ~

N 
(5.56) 

Hence the 95% limits to judge whether any ¢u is statistically significantly different 
from zero are given by ±2/ .JR. For further detail see Quenouille [ 1949], Jenkins 
[1954, 1956], and Daniels [1956]. 

Figure 5.9 shows the sample PACFs of the models we have considered so far. In 
Figure 5.9a we have the sample PACF of the realization of the MA( I) model with 
e = 0.8 given in Figure 5.3. It exhibits an exponential decay pattern. Figure 9b shows 
the sample PACF of the realization of the MA(2) model in Figure 5.4 and it also 
has an exponential decay pattern in absolute value since for this model the roots of 
the associated polynomial are real. Figures 5.9c and 5.9d show the sample PACFs of 
the realization of the AR( 1) model with¢ = 0.8 and¢ = -0.8. respectively. In both 
cases the PACF "cuts off' after the first lag. That is, the only significant sample PACF 
value is at lag 1, suggesting that the AR( I) model is indeed appropriate to fit the data. 
Similarly, in Figures 5.9e and 5.9f, we have the sample PACFs of the realizations of 
the AR(2) model. Note that the sample PACF cuts off after lag 2. 
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FIGURE 5.9 Partial autocorrelation functions for the realizations of (a) MA( I) process, y1 = 40 + £ 1 -

0.8£1_,; (b) MA(2) process, y1 = 40 + £1 + 0.7£1-1 - 0.28~:1 -z; (c) AR( I) process, .\'1 = 8 + 0.8\'1-l + 
£1; (d) AR(I) process, y1 = 8- 0.8y1_, + £1; (e) AR(2) process, y1 = 4 + 0.4}'1-1 + O.Sv1-2 + E:1; and 

(I) AR(2) process, .\'1 = 4 + 0.8v1-1 - 0.51'1-2 + £1. 

Invertibility of MA Models 
In the previous section we showed that the PACF "cuts off" after lag p for an AR(p ). 
The PACF of an MA(q) model, however, exhibits a more complicated pattern. For 
that we define an invertible moving average process as the following: the MA(q) 
process in Eq. (5.5) is said to be invertible if it has an absolutely summable infinite 
AR representation. 
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Consider the MA(q) process 

= J1 + 8(8)t:1 

After multiplying both sides with 8(8)~ 1 , we have 

8(8)~ 1 
)'1 = 8(8)~ 1 J1 + E1 

n < 8) Yt = 8 + E I 

(5.57) 

where n(8) = I- L: 1 rri8i = 8(8)~ 1 and 8(8)~ 1 J1 = 8. Hence the infinite AR 
representation of an MA(q) process is given as 

X 

Yt - L lfi_\"t~i = 8 + Et 

i=l 

with L: 1 lrril < oo. The rri can be determined from 

which in tum yields 

(5.58) 

(5.59) 

(5.60) 

with rr0 = -I and rr1 = 0 for j < 0. Hence as in the previous arguments for the 
stationarity of AR(p) models, the rri are the solutions to the qth-order linear difference 
equations and therefore the condition for the invertibility of an MA(q) process turns 
out to be very similar to the stationarity condition of an AR(p) process: the roots of 
the associated polynomial given in Eq. (5.60) should be less than I in absolute value, 

(5.61) 

An invertible MA(q) process can then be written as an infinite AR process. 
Correspondingly, for such a process, adjusting for Yt~ I· Yt~2· ... , Yt~k+l does not 

necessarily eliminate the correlation between y1 and Yt~k and therefore its PACF will 
never "cut off." In general, the PACF of an MA( q) process is a mixture of exponential 
decay and damped sinusoid expressions. 
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The ACF and the PACF do have very distinct and indicative properties forMA and 
AR models, respectively. Therefore, in model identification, we strongly recommend 
the use of both the sample ACF and the sample PACF simultaneously. 

5.5 MIXED AUTOREGRESSIVE-MOVING AVERAGE 
(ARMA) PROCESSES 

In the previous sections we have considered special cases of Wold's decomposition of 
a stationary time series represented as a weighted sum of infinite random shocks. In 
an AR( 1) process, for example, the weights in the infinite sum are forced to follow an 
exponential decay form with </J as the rate of decay. Since there are no restrictions apart 
from 'L:o 1/J? < oo on the weights ( 1/11 ), it may not be possible to approximate them 
by an exponential decay pattern. For that, we will need to increase the order of the AR 
model to approximate any pattern that these weights may in fact be exhibiting. On 
some occasions, however, it is possible to make simple adjustments to the exponential 
decay pattern by adding only a few terms and hence to have a more parsimonious 
model. Consider, for example, that the weights 1/11 do indeed exhibit an exponential 
decay pattern with a constant rate except for the fact that 1/11 is not equal to this rate of 
decay as it would be in the case of an AR( I) process. Hence instead of increasing the 
order of the AR model to accommodate for this "anomaly," we can add an MA( I) term 
that will simply adjust 1/1 1 while having no effect on the rate of exponential decay 
pattern of the rest of the weights. This results in a mixed autoregressive moving 
average or ARMA(l,l) model. In general, an ARMA(p, q) model is given as 

p q 

= 8 + L<PiYt-i + c:t- Leic:t-i (5.62) 
i=l 1=1 

or 

<I>( B) Yt = 8 + 8(B) £ 1 (5.63) 

where £ 1 is a white noise process. 

Stationarity of ARMA (p, q) Process 
The stationarity of an ARMA process is related to the AR component in the model 
and can be checked through the roots of the associated polynomial 

(5.64) 

If all the roots of Eq. (5.64) are less than one in absolute value, then ARMA(p, q) is 
stationary. This also implies that, under this condition, ARMA(p, q) has an infinite 
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MA representation as 

ex; 

y, = 11 + L 1/liEt-i = 11 + 41(8)E, 
i=O 

with 41(8) = <1>(8)-I 8(8). The coefficients in 41(8) can be found from 

and 1/lo = l. 

lnvertibility of ARMA (p, q) Process 

i = I. .... q 

i > q 

(5.65) 

(5.66) 

Similar to the stationarity condition. the invertibility of an ARMA process is related to 
the MA component and can be checked through the roots of the associated polynomial 

(5.67) 

If all the roots of Eq. (5.65) are less than one in absolute value, then ARMA(p, q) is 
said to be invertible and has an infinite AR representation, 

0(8)y, = Q' + E, (5.68) 

where a= 8(8)-I 8 and 0(8) = 8(8)- 1 <1>(8). The coefficients in 0(8) can be 
found from 

i =I. .... p 
(5.69) 

l>p 

and ITo= -I. 
In Figure 5.10 we provide realizations of two ARMA( I. I) models: 

y1 = 16+0.6y,_ 1 +s, +0.8s,_ 1 and y, = 16-0.7y,_ 1 +E1 -0.6s,_ 1• 

Note that the sample ACFs and PACFs exhibit exponential decay behavior (sometimes 
in absolute value depending on the signs of the AR and MA coefficients). 

ACF and PACF of ARMA(p,q) Process 
As in the stationarity and invertibility conditions, the ACF and PACF of an ARMA 
process are determined by the AR and MA components. respectively. It can there
fore be shown that the ACF and PACF of an ARMA(p, q) both exhibit exponential 
decay and/or damped sinusoid patterns, which makes the identification of the order 
of the ARMA(p, q) model relatively more difficult. For that, additional sample func
tions such as the Extended Sample ACF (ESACF), the Generalized Sample PACF 
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FIGURE 5.10 Two real izations of the ARMA ( I . I ) model: (a) Yr = 16 + 0.6y, 1 + e, + 0.8t 1 1 and 
(b) y1 = 16 - 0.7v, 1 +e, - 0.6£, 1-(c) T heACFof (a),(d) theACFof (b). (e)thePACFof(a). and (f) 
I he PACF of (h) 

(GPACF), the Inverse ACF (IACF), and canonical correlations can be used. For fur
ther information see Box, Jenkins, and Reinsel [ 1994], Wei [2006], Tiao and Box 
[ 198 1], Tsay and Tiao [ 1984], and Abraham and Ledolter [ 1984] . However, the avail
ability of sophisticated statistical software packages such as Minitab, JMP, and SAS 
makes it possible for the practitioner to consider several different models with various 
orders and compare them based on the model selection criteria such as AlC, AICC, 
and SIC as described in Chapter 2 and residual analysis. 

The theoretical values of the ACF and PACF for stationary time series are summa
rized in Table 5. 1. The summary of the sample ACFs and PACFs of the realizations 
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TABLE 5.1 Behavior of Theoretical ACF and PACF for Stationary Processes 

Model 

MA(q) 

AR(p) 

ARMA(p,q) 

ACF 

Cuts off after lag q 

Exponential decay and/or damped 
sinusoid 

Exponential decay and/or damped 
sinusoid 

PACF 

Exponential decay and/or damped 
sinusoid 

Cuts off after lag p 

Exponential decay and/or damped 
sinusoid 

of some of the models we have covered in this chapter are given in Table 5.2. Table 
5.3, and Table 5.4 forMA, AR, and ARMA models. respectively. 

5.6 NONSTATIONARY PROCESSES 

It is often the case that while the processes may not have a constant level, they 
exhibit homogeneous behavior over time. Consider, for example, the linear trend 
process given in Figure 5.1 c. It can be seen that different snapshots taken in time 
do exhibit similar behavior except for the main level of the process. Similarly. 
processes may show nonstationarity in the slope as well. We will call a time series. 
Y~> homogeneous. nonstationary if it is not stationary but its first difference, that is, 
W 1 = y1 - Yr-1 =(I- B)y1,orhigher-orderdifferences. W 1 =(I- B)" Y1 .produce 
a stationary time series. We will further call y1 an autoregressive integrated moving 
average (ARIMA) process of orders p,d, andq-that is, ARIMA(p, d, q)-ifits dth 
difference, denoted by w 1 = (I -B)" y1 • produces a stationary ARMA(p. ql process. 
The term integrated is used since, ford = I, for example, we can write Yr as the sum 
(or "integral") of the w1 process as 

Yr = Wr + Yr-1 

= Wr + Wr-1 + Yr-2 (5.70) 

= Wr + Wr-1 +···+WI+ .\"0 

Hence an ARIMA(p, d, q) can be written as 

<t>(B)(l- B)" Yr = 8 + 0)(B)t: 1 (5.71) 

Thus once the differencing is performed and a stationary time series w 1 = 
(I - B)" y1 is obtained, the methods provided in the previous sections can be used to 
obtain the full model. In most applications first differencing (d = I) and occasion
ally second differencing (d = 2) would be enough to achieve stationarity. However, 
sometimes transformations other than differencing are useful in reducing a nonsta
tionary time series to a stationary one. For example, in many economic time series the 
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variability of the observations increases as the average level of the process increases; 
however, the percentage of change in the observations is relatively independent of 
level. Therefore taking the logarithm of the original series will be useful in achieving 
stationarity. 

Some Examples of ARIMA(p, d, q) Processes 
The random walk process, ARIMA(O, 1, 0) is the simplest nonstationary modeL It 
is given by 

(1- B)yr =o+Er (5.72) 

suggesting that first differencing eliminates all serial dependence and yields a white 
noise process. 

Consider the process y1 = 20 + Yr-l + E1 • A realization of this process together 
with its sample ACF and PACF are given in Figure 5.lla-c. We can see that the sample 
ACF dies out very slowly, while the sample PACF is only significant at the first lag. 
Also note that the PACF value at the first lag is very close to one. All this evidence 
suggests that the process is not stationary. The first difference, w1 = y1 - y1_ 1 , and 
its sample ACF and PACF are shown in Figure 5.11 d-f. The time series plot of w 1 

implies that the first difference is stationary. In fact, the sample ACF and PACF do 
not show any significant values. This further suggests that differencing the original 
data once "clears out" the autocorrelation. Hence the data can be modeled using the 
random walk model given in Eq. (5.72). 

The ARIMA(O, 1, 1) process is given by 

(I- B)y1 = 8 +(I- 8B)E1 

The infinite AR representation of Eq. (5.73) can be obtained from Eq. (5.69) 

rr; -err;-1 = 1
1, 

0. 

with rr0 = -I. Thus we have 

oc 

Yt = 0'. + LTriYt-i + Et 
i=l 

i =I 

i > I 

= 0'. +(I - ()) (Yt-1 + ()Yt-2 + · · ·) + Et 

(5.73) 

(5.74) 

(5.75) 

This suggests that an ARIMA(O, I, I) (a.k.a. IMA(l, 1 )) can be written as an expo
nentially weighted moving average (EWMA) of all past values. 
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TABLE 5.2 Sample ACFs and PACFs for Some Realizations of MA(l) and MA(2) Models 
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TABLE 5.3 Sample ACFs and PACFs for Some Realizations of AR(l) and AR(2) Models 
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TABLE 5.4 Sample ACFs and PACFs for Some Realizations of ARMA(l,l) Models 
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FIGURE 5.11 A realization of the ARIMA(O, I, 0) model, y1 , its first difference, w1 , and their sample 

ACFs and PACFs. 

Consider the time series data in Figure 5. 12a. It looks like the mean of the process is 

changing (moving upwards) in time. Yet the change in the mean (i.e., nonstationarity) 

is not as obvious as in the previous example. The sample ACF plot ofthedata in Figure 

5. 12b dies relatively slowly and the sample PACF of the data in Figure 5. 12c shows 

two significant values at lags I and 2. Hence we might be tempted to model this data 

using an AR(2) model because of the exponentially decaying ACF and significant 

PACF at the first two lags. Indeed, we might even have a good fit using an AR(2) 
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FIGURE 5.12 A realization of the ARIMA(O, I, I) model, y1, its first difference, w, and their sample 
ACFs and PACFs. 

model. We should nevertheless check the roots of the associated polynomial given in 
Eq. (5.34) to make sure that its roots are less than 1 in absolute value. Also note that a 
technically stationary process will behave more and more nonstationary as the roots of 
the associated polynomial approach unity. For that, observe the realization of the near 
nonstationary process, y, = 2 + 0.95y,_ 1 + e,, given in Figure 5.lb. Based on the 
visual inspection, however, we may deem the process nonstationary and proceed with 
taking the first difference of the data. This is because the¢ value of the AR( 1) model 
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is close to 1. Under these circumstances, where the nonstationarity of the process 
is dubious, we strongly recommend that the analyst refer back to basic underlying 
process knowledge. If, for example, the process mean is expected to wander otT as in 
some financial data, assuming that the process is nonstationary and proceeding with 
differencing the data would be more appropriate. For the data given in Figure 5.12a, 
its first difference given in Figure 5.12d looks stationary. Furthermore, its sample 
ACF and PACF given in Figures 5.12e and 5.12f, respectively, suggest that an MA( 1) 

model would be appropriate for the first difference since its ACF cuts off after the 
first lag and the PACF exhibits an exponential decay pattern. Hence the ARIMA 
(0, 1, 1) model given in Eq. (5.73) can be used for this data. 

5.7 TIME SERIES MODEL BUILDING 

A three-step iterative procedure is used to build an ARIMA model. First, a tentative 
model of the ARIMA class is identified through analysis of historical data. Second, 
the unknown parameters of the model are estimated. Third, through residual analysis, 
diagnostic checks are performed to determine the adequacy of the model, or to indicate 
potential improvements. We shall now discuss each of these steps in more detail. 

5.7.1 Model Identification 

Model identification efforts should start with preliminary efforts in understanding the 
type of process from which the data is coming and how it is collected. The process's 
perceived characteristics and sampling frequency often provide valuable information 
in this preliminary stage of model identification. In today's data rich environments, 
it is often expected that the practitioners would be presented with "enough" data to 
be able to generate reliable models. It would nevertheless be recommended that 50 
or preferably more observations should be initially considered. Before engaging in 
rigorous statistical model-building efforts, we also strongly recommend the use of 
"creative" plotting of the data, such as the simple time series plot and scatter plots 
of the time series data y1 versus Yr-l, Yr-2. and so on. For the Yr versus Yr-l scatter 
plot, for example, this can be achieved in a data set of N observations by plotting 
the first N - I observations versus the last N - I. Simple time series plots should be 
used as the preliminary assessment tool for stationarity. The visual inspection of these 
plots should later be confirmed as described earlier in this chapter. If nonstationarity is 
suspected, the time series plot of the first (or dth) difference should also be considered. 
The unit root test by Dickey and Fuller [ 1979] can also be performed to make sure that 
the differencing is indeed needed. Once the stationarity can be presumed, the sample 
ACF and PACF of the time series of the original time series (or its dth difference if 
necessary) should be obtained. Depending on the nature of the autocorrelation, the 
first 20-25 sample autocorrelations and partial autocorrelations should be sufficient. 
More care should be taken of course if the process exhibits strong autocorrelation 
and/or seasonality, as we will discuss in the following sections. Table 5.1 together 

with the ±2/ J7V limits can be used as a guide for identifying AR or MA models. 
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As discussed earlier, the identification of ARMA models would require more care, 
as both the ACF and PACF will exhibit exponential decay and/or damped sinusoid 
behavior. 

We have already discussed that the differenced series { w1 } may have a nonzero 
mean, say, Jlw· At the identification stage we may obtain an indication of whether or 
not a nonzero value of Jlu· is needed by comparing the sample mean of the differ
enced series, say, w = L7~f [w/(n- d)], with its approximate standard error. Box. 
Jenkins, and Reinsel [ 1994] give the approximate standard error of U) for several 
useful ARIMA(p, d, q) models. 

Identification of the appropriate ARIMA model requires skills obtained by ex
perience. Several excellent examples of the identification process are given in Box 
eta!. [1994, Chap. 6] and Montgomery eta!. [1990]. 

5.7.2 Parameter Estimation 

There are several methods such as methods of moments, maximum likelihood, and 
least squares that can be employed to estimate the parameters in the tentatively identi
fied model. However, unlike the regression models of Chapter 2, most ARIMA models 
are nonlinear models and require the use of a nonlinear model fitting procedure. How
ever, this is usually automatically performed by sophisticated software packages such 
as Mini tab, JMP, and SAS. In some software packages, the user may have the choice 
of estimation method and can accordingly choose the most appropriate method based 
on the problem specifications. 

5.7.3 Diagnostic Checking 

After a tentative model has been fit to the data, we must examine its adequacy and, 
if necessary, suggest potential improvements. This is done through residual analysis. 
The residuals for an ARMA(p, q) process can be obtained from 

(5.76) 

If the specified model is adequate and hence the appropriate orders p and q are 
identified, it should transform the observations to a white noise process. Thus the 
residuals in Eq. (5.76) should behave like white noise. 

Let the sample autocorrelation function of the residuals be denoted by {re (k)}. 
If the model is appropriate, then the residual sample autocorrelation function should 
have no structure to identify. That is, the autocorrelation should not differ significantly 
from zero for all lags greater than one. If the form of the model were correct and if we 
knew the true parameter values, then the standard error of the residual autocorrelations 
would be N- 112• 

Rather than considering the re(k) terms individually, we may obtain an indication 
of whether the first K residual autocorrelations considered together indicate adequacy 
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of the model. This indication may be obtained through an approximate chi-square test 
of model adequacy. The test statistic is 

K 

Q = (N -d) L r; (k) (5.77) 
k=l 

which is approximately distributed as chi-square with K - p - q degrees of freedom 
if the model is appropriate. If the model is inadequate, the calculated value of Q will 
be too large. Thus we should reject the hypothesis of model adequacy if Q exceeds 
an approximate small upper tail point of the chi-square distribution with K - p - q 

degrees of freedom. Further details of this test are in Chapter 2 and in the original 
reference by Box and Pierce [ 1970]. The modification of this test by Ljung and Box 
f 1978 J presented in Chapter 2 is also useful in assessing model adequacy. 

5. 7.4 Examples of Building A RIMA Models 

In this section we shall present two examples of the identification, estimation, and 
diagnostic checking process. One example presents the analysis for a stationary time 
series, while the other is an example of modeling a nonstationary series. 

Example 5.1 

Table 5.5 shows the weekly total number of loan applications in a local branch of 
a national bank for the last two years. It is suspected that there should be some 
relationship (i.e., autocorrelation) between the number of applications in the current 
week and the number of loan applications in the previous weeks. Modeling that 
relationship will help the management to proactively plan for the coming weeks 
through reliable forecasts. As always, we start our analysis with the time series plot 
of the data, shown in Figure 5.13. 

Figure 5.13 shows that the weekly data tend to have short runs and that the data 
seem to be indeed autocorrelated. Next, we visually inspect the stationarity. Although 
there might be a slight drop in the mean for the second year (weeks 53-104 ), in 
general it seems to be safe to assume stationarity. 

We now look at the sample ACF and PACF plots in Figure 5.14. Here are possible 

interpretations of the ACF plot: 

1. It cuts off after lag 2 (or maybe even 3), suggesting a MA(2) (or MA(3)) model. 

2. It has an (or a mixture ot) exponential decay(s) pattern suggesting an AR(p) 
model. 

To resolve the conflict, consider the sample PACF plot. For that, we have only one 
interpretation; it cuts off after lag 2. Hence we use the second interpretation of the 
sample ACF plot and assume that the appropriate model to fit is the AR(2) model. 

Table 5.6 shows the Mini tab output for the AR(2) model. The parameter estimates 
are ¢ 1 = 0.27 and ¢2 = 0.42, and they turn out to be significant (see the ?-values). 
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TABLES.S Weekly Total Number of Loan Applications for the Last Two Years 

Week 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Applications Week Applications Week Applications Week Applications 
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82 
74 
78 
75 
73 
76 
66 
69 
63 
76 
65 
73 

90 

27 62 53 66 79 
28 77 54 71 80 
29 76 55 59 81 
30 88 56 57 82 
31 71 57 66 83 
32 72 58 51 84 
33 66 59 59 85 
34 65 60 56 86 
35 73 61 57 87 
36 76 62 55 88 
37 81 63 53 89 
38 84 64 74 90 
39 68 65 64 91 
40 63 66 70 92 
41 66 67 74 93 
42 71 68 69 94 
43 67 69 64 95 
44 69 70 68 96 
45 63 71 64 97 
46 61 72 70 98 
47 68 73 73 99 
48 75 74 59 100 
49 66 75 68 101 
so 81 76 59 102 
51 72 77 66 103 
52 77 78 63 104 

10 20 30 40 50 60 70 80 90 100 
Week 

FIGURE 5.13 Time series plot of the weekly total number of loan applications. 
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FIGURE 5.14 ACF and PACF for the weekly total number of loan applications. 

MSE is calculated to be 39.35. The modified Box-Pierce test suggests that there is no 
autocorrelation left in the residuals. We can also see this in the ACF and PACF plots 
of the residuals in Figure 5.15. 

As the last diagnostic check, we have the 4-in-1 residual plots in Figure 5.16 pro
vided by Mini tab: Normal Probability Plot, Residuals versus Fitted Value, Histogram 
of the Residuals, and Time Series Plot of the Residuals. They indicate that the fit is 
indeed acceptable. 

TABLE 5.6 Minitab Output for the AR(2) Model for the Loan Application Data 

Final Estimates of Parameters 

Type Coef SE Coef T p 

AR l 0.2682 0.0903 2.97 0.004 
AR 2 0.4212 0.0908 4.64 0.000 
Constant 20.7642 0.6157 33.73 0.000 
Mean 66.844 1. 982 

Number of observations: 104 
Residuals: SS 3974.30 (backforecasts excluded) 

MS = 39.35 DF = 101 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 6.2 16.0 24.9 32.0 
DF 9 21 33 45 
P-Value 0. 718 0.772 0.843 0.927 
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FIGURE 5_15 The sample ACF and PACF of the residuals for the AR(2) model in Table 5.6. 

Figure 5.17 shows the actual data and the fitted values. It looks like the fitted values 
smooth out the highs and lows in the data. 

Note that, in this example, we often and deliberately used "vague" words such as 
"seems" or " looks like." It should be clear by now that the methodo logy presented 
in this chapter has a very sound theoretical foundation. However, as in any modeling 
effort, we should also keep in mind the subjective component of model identification. 
In fact, as we mentioned earlier, time series model fitting can be seen as a mixture of 
science and art and can best be learned by practice and experience. The next example 
will illustrate this point further. • 
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FIGURE 5.16 Residual plots for the AR(2) model in Table 5.6. 
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FIGURE 5.17 Time series plot of the actual data and fitted values for the AR(2) model in Table 5.6. 

Example 5.2 

Consider the Dow Jones Index data from Chapter 4. A time series plot of the data is 
given in Figure 5.18. The process shows signs of nonstationarity with changing mean 

and possibly variance. 
Similarly, the slowly decreasing sample ACF and sample PACF with significant 

value at lag 1, which is close to l in Figure 5.19, confirm that indeed the process 
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FIGURE 5.18 Time series plot of the Dow Jones Index from June 1999 to June 2006. 
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FIGURE 5.19 Sample ACF and PACF of the Dow Jones Index. 

can be deemed nonstationary. On the other hand, one might argue that the significant 
sample PACF value at lag I suggests that the AR( I) model might also fit the data well. 
We will consider this interpretation first and fit an AR( I) model to the Dow Jones 
Index data. 

Table 5.7 shows the Minitab output for the AR(l) model. Although it is close to 
l, the AR( l) model coefficient estimate ¢ = 0. 9045 turns out to be quite significant 
and the modified Box-Pierce test suggests that there is no autocorrelation left in the 
residuals. This is also confirmed by the sample ACF and PACF plots of the residuals 
given in Figure 5.20. 

The only concern in the residual plots in Figure 5.21 is in the changing variance 
observed in the time series plot of the residuals. This is indeed a very important issue 

TABLE 5.7 Minitab Output for the AR(l) Model for the Dow Jones Index 

Final Estimates of Parameters 

Type 
AR l 
Constant 
Mean 

Coef 
0.9045 
984.94 

10309.9 

SE Coef 
0.0500 

T 

18.10 

p 

0.000 
44.27 22.25 0.000 
463.4 

Number of observations: 85 
Residuals: SS 13246015 (backforecasts excluded) 

MS = 159591 DF = 83 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 2.5 14.8 21.4 29.0 
DF 10 22 34 46 
P-Value 0.991 0.872 0.954 0.977 
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FIGURE 5.20 Sample ACF and PACF of the residuals from the AR( I) model for the Dow Jones Index 
data. 

since it violates the constant variance assumption. We will discuss this issue further 
in Section 7.3 but for illustration purposes we will ignore it in this example. 

Overall it can be argued that an AR(l) model provides a decent fit to the data. 
However, we will now consider the earlier interpretation and assume that the Dow 
Jones Index data comes from a nonstationary process. We then take the first difference 
of the data as shown in Figure 5.22. While there are once again some serious concerns 
about changing variance, the level of the first difference remains the same. If we ignore 
the changing variance and look at the sample ACF and PACF plots given in Figure 5.23, 
we may conclude that the first difference is in fact white noise. That is, since these 
plots do not show any sign of significant autocorrelation, a model we may consider 
for the Dow Jones Index data would be the random walk model, ARIMA (0, 1, 0). 
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FIGURE 5.21 Residual plots from the AR(l) model for the Dow Jones Index data. 
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FIGURE 5.22 Time series plot of the first difference w(t) of the Do\\ Jones Index data. 

Now the analyst has to decide between the two models: AR( 1) and ARIMA 
(0, I, 0). One can certainly use some of the criteria we discussed in Section 2.6.2 to 
choose one of these models. Since these two models are fundamentally quite different. 
we strongly recommend that the analyst use the subject matter/process knowledge as 
much as possible. Do we expect a financial index such as the Dow Jones Index to 
wander about a fixed mean as implied by the AR( I)? In most cases involving financial 
data, the answer would be no. Hence a model such as ARIMA(O, I, 0) that takes into 
account the inherent nonstationarity of the process should be preferred. However, we 
do have a problem with the proposed model. A random walk model means that the 
price changes are random and cannot be predicted. If we have a higher price today 
compared to yesterday, that would have no bearing on the forecasts tomorrow. That 
is, tomorrow's price can be higher or lower than today's and we would have no way 
to forecast it effectively. This further suggests that the best forecast for tomorrow's 
price is in fact the price we have today. This is obviously not a reliable and effective 
forecasting model. This very same issue of the random walk models for financial 
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FIGURE 5.23 Sample ACF and PACF plots of the first difference of the Dow Jones Index data. 
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data has been discussed in great detail in the literature. We simply used this data to 

illustrate that in time series model fitting we can end up with fundamentally different 

models that will fit the data equally well. At this point, process knowledge can provide 

the needed guidance in picking the "right" model. 

It should be noted that, in this example, we tried to keep the models simple for 

illustration purposes. Indeed, a more thorough analysis would (and should) pay close 

attention to the changing variance issue. In fact, this is a very common concern 

particularly when dealing with financial data. For that, we once again refer the reader 

to Section 7.3. • 

5.8 FORECASTING ARIMA PROCESSES 

Once an appropriate time series model has been fit, it may be used to generate forecasts 

of future observations. If we denote the current time by T, the forecast for YT +r is 

called the r -period-ahead forecast and denoted by h +r (T). The standard criterion to 

use in obtaining the best forecast is the mean squared error for which the expected value 

of the squared forecast errors, Ef(YT+r- YT+r (T))2] = E[er (r)2], is minimized. 

It can be shown that the best forecast in the mean square sense is the conditional 

expectation of YT +r given current and previous observations, that is, YT, YT _ 1, ••• : 

h +r ( T) = E r YT +r I YT' YT -1 0 ° 0 
.] 

(5.78) 

Consider, for example, an ARIMA (p, d, q) process at timeT+ r (i.e., r period in 

the future): 

p+d q 

YT+r = 8 + L c/J;YT+r-i + CT+r- L 8;£T+r-i 

i=l i=l 

Further consider its infinite MA representation, 

:)() 

YT+r = 1-t + L 1/f;t:T+r-i 
i=l 

We can partition Eq. (5.80) as 

r-1 oo 

YT+r = 1-t + L 1/f;t:T+r-i + L 1/f;t:T+r-i 
i=I i=r 

(5.79) 

(5.80) 

(5.81) 

In this partition we can clearly see that the L.r::/ 1/f;t:T+r-i component involves the 

future errors whereas the L~r 1/f;t:T+r-i component involves the present and past 

errors. From the relationship between the current and past observations and the cor

responding random shocks as well as the fact that the random shocks are assumed 

to have mean zero and to be independent, we can show that the best forecast in the 
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mean square sense is 

X 

YT+r (T) = E [YT+rl YT• YT-1· ··.]=fl.+ L lji;ET+r-i 
i=r 

since 

E[ET+r-iiYr.YT-1 •... ]={ O 
ET+r-i 

Subsequently, the forecast error is calculated from 

r-1 

if i < T 

if C:: T 

er (T) = JT+r- h+r (T) = L lji;ET+r-i 
i=O 

(5.82) 

(5.83) 

Since the forecast error in Eq. (5.83) is a linear combination of random shocks, we 
have 

E [er (T)] = 0 (5.84) 

[

r-1 J r-1 
Var[er (T)] = Var ~ lji;Er+r-i = ~ JjllVar(Er+r-il 

r-1 

= a2 L ljl/ (5.85) 
i=O 

It should be noted that the variance of the forecast error gets bigger with increasing 
forecast lead times T. This intuitively makes sense as we should expect more uncer
tainty in our forecasts further into the future. Moreover, if the random shocks are 
assumed to be normally distributed, N(O, a 2 ), then the forecast errors will also be 
normally distributed with N(O, a 2(T)). We can then obtain the 100(1 -a) percent 
prediction intervals for the future observations from 

(5.86) 

where ZafZ is the upper a (2 percentile of the standard normal distribution, N (0. I). 
Hence the 100(1 -a) percent prediction interval for YT+r is 

(5.87) 

There are two issues with the forecast equation in (5.82). First. it involves infinitely 
many terms in the past. However, in practice, we will only have a finite amount of data. 
For a sufficiently large data set, this can be overlooked. Second. Eq. (5.82) requires 
knowledge of the magnitude of random shocks in the past, which is unrealistic. A 
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solution to this problem is to "estimate" the past random shocks through one-step
ahead forecasts. For the ARIMA model we can calculate 

(5.88) 

recursively by setting the initial values of the random shocks to zero fort < p + d + I. 
For more accurate results, these initial values together with the y1 for t ::::; 0 can also 
be obtained using back-forecasting. For further details, see Box, Jenkins, and Reinsel 
[1994]. 

As an illustration consider forecasting the ARIMA( l, I, I) process 

(I - ¢B)(I -B) YT+r = (1 - 8B) ET+r (5.89) 

We will consider two of the most commonly used approaches: 

1. As discussed earlier, this approach involves the infinite MA representation of 
the model in Eq. (5.89), also known as the random shock form of the model: 

00 

YT+r = L lf;;ET+r-i 
i=l 

Hence the r -step-ahead forecast can be calculated from 

The weights lf;; can be calculated from 

(5.90) 

(5.91) 

(5.92) 

and the random shocks can be estimated using the one-step-ahead forecast error; 
for example, s 7 can be replaced by er (I)= YT- h (T- 1). 

2. Another approach that is often employed in practice is to use difference equa
tions as given by 

YT+r =(I+¢) YT+r-1 - tPYT+r-2 + CT+r- ec:T+r-1 (5.93) 

For r = 1, the best forecast in the mean squared error sense is 

h+l (T) = E [YT+II Yr, YT-1, · · .) = (1 + ¢) YT- tPYT-1- 8er(l) (5.94) 

We can further show that for lead times r > 2, the forecast is 

YT+r (T) = (1 + ¢)Yr (r- l)- ¢h (r- 2) (5.95) 
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FIGURE 5.24 Forecasts for the weekly loan application data. 

Example5.3 

Consider the loan applications data given in Table 5.5. Now assume that the manager 
wants to make forecasts for the next 3 months ( 12 weeks). Hence at the I 04th week we 
need to make 1-step, 2-step, ... , 12-step-ahead predictions, which are obtained and 
plotted using Minitab in Figure 5.24 together with the 95% prediction interval. • 

Table 5.8 shows the output from JMP for fitting an AR(2) model to the weekly 
loan application data. In addition to the sample ACF and PACE JMP provides 

TABLE 5.8 JMP AR(2) Output for the Loan Application Data 

Time Series y(t) 

90.---------;-------------------------, 

80 

10 20 30 40 50 60 70 80 90 100 110 
Row 

Mean 
Std 
N 

zero Mean ADF 
Single Mean ADF 
Trend ADF 

67.067308 
7.663932 

104 
··0. 695158 
-6.087814 

.396174 
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TABLE 5.8 (Continuetf) 

Time Series Basic Diagnostics 
Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value 

0 1.0000 
1 0.4617 22.8186 <.0001 
2 0.5314 53.3428 <.0001 
3 0.2915 - 62.6167 <.0001 
4 0.2682 M! 70.5487 <.0001 
5 0.2297 Ml 76.4252 <.0001 
6 0.1918 Mi 80.5647 <.0001 
7 0.2484 Mi 87.5762 <.0001 
8 0.1162 89.1255 <.0001 
9 0.1701 • 92.4847 <.0001 

10 0.0565 92.8587 <.0001 
11 0.0716 93.4667 <.0001 
12 0.1169 95.1040 <.0001 
13 0.1151 I I 96.7080 <.0001 
14 0.2411 Mi 103.829 <.0001 
15 0.1137 I I 105.430 <.0001 
16 0.2540 Mi 113.515 <.0001 
17 0.1279 I I 115.587 <.0001 
18 0.2392 .I 122.922 <.0001 
19 0.1138 124.603 <.0001 
20 0.1657 • 128.206 <.0001 
21 0.0745 128.944 <.0001 
22 0.1320 I 131.286 <.0001 
23 0.0708 131.968 <.0001 
24 0.0338 132.125 <.0001 
25 0.0057 132.130 <.0001 

Lag Partial Plot Partial 
Lag AutoCorr Plot Autocorr 

0 1.0000 Ljung-Box Q p-Value 
1 0.4617 
2 0.4045 
3 -0.0629 
4 -0.0220 
5 0.0976 
6 0.0252 
7 0.1155 I II 
8 -0.1017 II 
9 0.0145 

10 -0.0330 
11 -0.0250 
12 0.1349 II 
13 0.0488 
14 0.1489 .! 
15 -0.0842 
16 0.1036 II 
17 0.0105 
18 0.0830 
19 -0.0938 II 
20 0.0052 
21 -0.0927 II 
22 0.1149 II 
23 -0.0645 
24 -0.0473 
25 -0.0742 
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TABLE 5.8 JMP AR(2) Output for the Loan Application Data (Continued) 

Model Comparison 

Model DF Variance 
AR(2) 101 39.458251 

AIC 
680.92398 

SBC RSquare 
688.85715 0.343 

Model: AR(2) 
Model Summary 

DF 
Sum of Squared Errors 
Variance Estimate 
Standard Deviation 
Akaike's 'A' Information Criterion 
Schwarz's Bayesian Criterion 
RSquare 
RSquare Adj 
MAPE 
MAE 
-2LogLikelihood 

Stable 
Invertible 

Yes 
Yes 

Parameter Estimates 
Term Lag Estimate 
AR1 1 0.265885 
AR2 2 0.412978 
Intercept 0 66.854262 

Std Error 
0.089022 
0.090108 
1.833390 

t Ratio 
2.99 
4.58 

36.46 

101 
3985.28336 
39.4582511 

6.2815803 
680.923978 
688.857151 
0.34278547 
0.32977132 
7.37857799 
4.91939717 
674.923978 

Prob>ltl 
0.0035 
<.0001 
<.0001 

Forecast 
90.-------~----------------,----. 

85 

~ 80 
~ 75 

~ 70 
ij65 

£60 

• • 

55 
50,_----,-----~--~·r-----r----.~~--~ 

• "· • 
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60 

Row 
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::J 
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• 
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-2LogLH 

674.92398 

Constant Estimate 
21.469383 
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TABLES.S (Continued) 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 

0 1.0000 
0.0320 0.1094 0.7408 

2 0.0287 0.1986 0.9055 

3 -0.0710 0.7489 0.8617 

4 -0.0614 1.1647 0.8839 

5 -0.0131 1.1839 0.9464 

6 0.0047 1.1864 0.9776 

7 0.14651 81 3.6263 0.8217 

8 -0.0309 3.7358 0.8801 

9 0.0765 4.4158 0.8820 

10 -0.09381 II I 5.4479 0.8593 

11 -0.0698 6.0251 0.8717 

12 0.0019 6.0255 0.9148 

13 0.0223 6.0859 0.9430 

14 0.16041 Mi 9.2379 0.8155 

15 -0.0543 9.6028 0.8440 

16 0.11811 II 11.3501 0.7874 

17 -0.0157 11.3812 0.8361 

18 0.12991 II 13.5454 0.7582 

19 -0.0059 13.5499 0.8093 

20 0.0501 13.8788 0.8366 

21 -0.0413 14.1056 0.8650 

22 0.0937 15.2870 0.8496 

23 0.0409 15.5146 0.8752 

24 -0.0035 15.5163 0.9047 

25 -0.0335 15.6731 0.9242 

Lag Partial Plot Partial 

0 1.0000 
1 0.0320 
2 0.0277 
3 -0.0729 
4 -0.0580 
5 -0.0053 
6 0.0038 
7 0.13991 II 
8 -0.0454 
9 0.0715 

10 -0.0803 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 

11 -0.0586 
12 0.0201 
13 0.0211 
14 0.1306 81 
15 -0.0669 
16 0.1024 II 
17 0.0256 
18 0.1477 81 
19 -0.0027 
20 0.0569 
21 -0.0823 II I 
22 0.1467 I 81 
23 -0.0124 
24 0.0448 
25 -0.0869 II 
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the model fitting information including the estimates of the model parameters, the 
forecasts for 10 periods into the future and the associated prediction intervals, and 
the residual autocorrelation and partial autocorrelation functions. The AR(2) model 
is an excellent fit to the data. 

5.9 SEASONAL PROCESSES 

Time series data may sometimes exhibit strong periodic patterns. This is often referred 
to as the time series having a seasonal behavior. This mostly occurs when data is taken 
in specific intervals-monthly, weekly, and so on. One way to represent such data is 
through an additive model where the process is assumed to be composed of two parts, 

(5.96) 

where S1 is the deterministic component with periodicity s and N, is the stochastic 
component that may be modeled as an ARMA process. In that. y, can be seen as a 
process with predictable periodic behavior with some noise sprinkled on top of it. 
Since the S, is deterministic and has periodicity s, we have S, = S,+s or 

S, - S,_5 =(I - 8 5 )51 = 0 

Applying the (1 - B') operator to Eq. (5.96), we have 

(1 - 8 5 )y1 =(I - 8 5 )5, +(I - B')N, --...- --...-
::w, =0 

w, = (1 - 8 5 )N, 

(5.97) 

(5.98) 

The process w1 can be seen as seasonally stationary. Since an ARMA process can 
be used to model N,, in general we have 

<1>(8)w1 =(I - 8 5 )G(8)E1 (5.99) 

where E1 is white noise. 
We can also consider S, as a stochastic process. We will further assume that after 

seasonal differencing, (1 - 8'), (I - 8 5
) y, = w, becomes stationary. This, however, 

may not eliminate all seasonal features in the process. That is, the seasonally differ
enced data may still show strong autocorrelation at lags s, 2s, .... So the seasonal 
ARMA model is 

( * 5 * 2s * P 5} ( * 5 * 2s * Qs} 1-¢18-¢28 -···-</Jp8 w,= 1-0]8 -028 -···-Oo8 E, 

(5.100) 

This representation, however, only takes into account the autocorrelation at seasonal 
lags s, 2s, .... Hence a more general seasonal ARIMA model of orders (p. d, q) x 
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(P, D, Q) with periods is 

(5.101) 

In practice, although it is case specific, it is not expected to have P, D, and Q greater 

than I. The results for regular ARIMA processes that we discussed in previous sections 

apply to the seasonal models given in Eq. (5.101). 
As in the nonseasonal ARIMA models, the forecasts for the seasonal ARIMA 

models can be obtained from the difference equations as illustrated for example in 

Eq. (5.95) for a nonseasonal ARIMA (1,1,1) process. Similarly the weights in the 

random shock form given in Eq. (5.90) can be estimated as in Eq. (5.92) to obtain 

the estimate for the variance of the forecast errors as well as the prediction intervals 

given in Eqs. (5.85) and (5.86) respectively. 

Example 5.4 

The ARIMA (0, 1, I) x (0, 1, 1) model with s = 12 is 

For this process, the autocovariances are calculated as 

Example 5.5 

y(O) = Var(w1 ) = a 2 (1 + e~ + e~2 + ( -e 1 e~) 2 ) 

= a 2 (i + e~)(l + et2
) 

y(l) = Cov(wr. Wr-1) = a 2(-e! + e~(-e!e~)) 
= -e 1a

2 (1 + et) 
y(2) = y(3) = .. · = y(IO) = 0 

0 * y(ll) = a-elel 

y(l2) = -a 2e 1*(1 +en 
2 * y(l3) =a elei 

y(j)=O, }>13 • 

Consider the U.S. clothing sales data in Table 4.9. The data obviously exhibit some 

seasonality and upward linear trend. The sample ACF and PACF plots given in 

Figure 5.25 indicate a monthly seasonality, s = 12, as ACF values at lags 12, 24, 36 

are significant and slowly decreasing, and there is a significant PACF value at lag 12 
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Autocorrelation Function lor U.S. Clothing Sales 
(with 5% significance limits for the autocorrelations) 
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Partial Autocorrelation Function lor U.S. Clothing Sales 
(wrth 5% stgmficance limits for the partial autocorrelations) 
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FIGURE 5.25 Sample ACF and PACF plots of the U.S. clothing sales data. 

that is close to 1. Moreover, the slowly decreasing ACF in general also indicates a 
nonstationarity that can be remedied by taking the first difference. Hence we would 
now consider W 1 = (l- B)(1 - B 12 )y1 • 

Figure 5.26 shows that first difference together with seasonal differencing--that is, 
Wr = (I - B)( 1 - B 12 )y1--helps in terms of stationarity and eliminating the season
ality, which is also confirmed by sample ACF and PACF plots given in Figure 5.27. 
Moreover, the sample ACF with a significant value at lag I and the sample PACF with 
exponentially decaying values at the first 8 lags suggest that a nonseasonal MA( I) 
model should be used. 

The interpretation of the remaining seasonality is a bit more difficult. For that we 
should focus on the sample ACF and PACF values at lags 12. 24, 36, and so on. 
The sample ACF at lag 12 seems to be significant and the sample PACF at lags 12, 

Jan-92 Mar-93 Jun-94 Sep-95 Dec-96 Mar-98 Jun-99 Sep-00 Dec-01 Mar-03 

Date 

FIGURE 5.26 Time series plot of w, = (I - B)( I - B 12 )y, for the U.S. clothing sales data. 
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Autocorrelation Function for w(t) Partial Autocorrelation Function for w(t) 
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the Partial autocorrelations) 
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FIGURE 5.27 Sample ACF and PACF plots of w1 = (I - B)( I - B 12 )y1 . 

24, 36 (albeit not significant) seems to be alternating in sign. That suggests that a 
seasonal MA(l) model can be used as well. Hence an ARIMA (0, 1, 1) x (0, 1, 1) 12 

model is used to model the data, y1 • The output from Minitab is given in Table 5.9. 
Both MA( 1) and seasonal MA( 1) coefficient estimates are significant. As we can 
see from the sample ACF and PACF plots in Figure 5.28, while there are still some 
small significant values, as indicated by the modified Box-Pierce statistic, most of the 
autocorrelation is now modeled out. 

The residual plots in Figure 5.29 provided by Minitab seem to be acceptable as 
well. 

Finally, the time series plot of the actual and fitted values in Figure 5.30 suggests 
that the ARIMA(O, 1, I) x (0, I, 1) 12 model provides a reasonable fit to this highly 
seasonal and nonstationary time series data. • 

TABLE 5.9 Minitab Output for the ARIMA (0, 1, 1) x (0, 1, 1)12 

Model for the U.S. Clothing Sales Data 

Final Estimates of Parameters 

Type Coef SE Coef T P 

MA 0.7626 0.0542 14.06 0.000 

SMA 12 0.5080 0.0771 6.59 0.000 

Differencing: 1 regular, 1 seasonal of order 12 
Number of observations: Original series 155, after 

differencing 142 

Residuals: ss 
MS 

Modified Box-Pierce 

Lag 12 
Chi-Square 15.8 

DF 10 
P-Value 0.107 

10033560 (backforecasts excluded) 

71668 DF = 140 

(Ljung-Box) Chi-Square statistic 

24 36 48 
37.7 68.9 92.6 

22 34 46 

0.020 0.000 0.000 
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FIGURE 5.28 Sample ACF and PACF plots of residuals from the ARIMA(O. I. I) x (0. I. I lie model. 

5.10 FINAL COMMENTS 

ARIMA models (a.k.a. Box-Jenkins models) represent a very powerful and flexible 
class of models for time series analysis and forecasting. Over the years, they have been 
very successfully applied to many problems in research and practice. However, there 
might be certain situations where they may fall short on providing the "right" answers. 
For example, in ARIMA models, forecasting future observations primarily relies on 
the past data and implicitly assumes that the conditions at which the data is collected 
will remain the same in the future as well. In many situations this assumption may 
(and most likely will) not be appropriate. For those cases, the transfer function-noise 
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FIGURE 5.29 Residual plots from the ARIMA(O. I. I) x ({). I. 1) 12 modd for the U.S. clothing 

sales data. 
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FIGURE 5.30 Time series plot of the actual data and fitted values from the ARIMA(O, I, I) x (0. I, I )12 
model for the U.S. clothing sales data. 

models, where a set of input variables that may have an effect on the time series are 
added to the model, provide suitable options. We shall discuss these models in the 
next chapter. For an excellent discussion of this matter and of time series analysis and 
forecasting in general, see Jenkins [1979]. 

EXERCISES 

5.1 Consider the time series data shown in Chapter 4, Table E4.2. 

a. Fit an appropriate ARIMA model to the first 40 observations of this time 
series. 

b. Make one-step-ahead forecasts of the last l 0 observations. Determine the 
forecast errors. 

c. In Exercise 4.4 you used simple exponential smoothing with A = 0.2 to 
smooth the first 40 time periods of this data and make forecasts of the 
last I 0 observations. Compare the ARIMA forecasts with the exponential 
smoothing forecasts. How well do both of these techniques work? 

5.2 Consider the time series data shown in Table E5.1. 

a. Make a time series plot of the data. 

b. Calculate and plot the sample autocorrelation and partial autocorrelation 
functions. Is there significant autocorrelation in this time series? 
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TABLE E5.1 Data for Exercise 5.2 

Period v .I Period )' .I Period r .I Period r .I Period r .I 

29 II 29 21 31 31 28 41 36 
2 20 12 28 22 30 32 30 42 35 
3 25 13 28 23 37 33 29 43 33 
4 29 14 26 24 30 34 34 44 29 
5 31 15 27 25 33 35 30 45 25 
6 33 16 26 26 31 36 20 46 27 
7 34 17 30 27 27 37 17 47 30 
8 27 18 28 28 33 38 23 48 29 
9 26 19 26 29 37 39 24 49 28 
10 30 20 30 30 29 40 34 50 32 

c. Identify and fit an appropriate ARIMA model to these data. Check for model 
adequacy. 

d. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. 

5.3 Consider the time series data shown in Table E5.2. 

a. Make a time series plot of the data. 

b. Calculate and plot the sample autocorrelation and partial autocorrelation 
functions. Is there significant autocorrelation in this time series? 

c. Identify and fit an appropriate ARIMA model to these data. Check for model 
adequacy. 

d. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. 

TABLEE5.2 Data for Exercise 5.3 

Period Yr Period Y1 Period )' .I Period )' .I Period )' 
.I 

1 500 II 508 21 475 31 639 41 637 
2 496 12 510 22 485 32 679 42 606 
3 450 13 512 23 495 33 674 43 610 
4 448 14 503 24 500 34 677 44 620 
5 456 15 505 25 541 35 700 45 613 
6 458 16 494 26 555 36 704 46 593 
7 472 17 491 27 565 37 727 47 578 
8 495 18 487 28 601 38 736 48 581 
9 491 19 491 29 610 39 693 49 598 
10 488 20 486 30 605 40 65 50 613 
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5.4 Consider the time series model 

Yt = 200 + 0.7Yt-l + Ct 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y 100 = 750, would you expect the next obser
vation to be above or below the mean? 

5.5 Consider the time series model 

Yt = 150- 0.5yt-l + Cf 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y 100 = 85, would you expect the next observa
tion to be above or below the mean? 

5.6 Consider the time series model 

Yt =50+ 0.8Yr-l- 0.15 + c1 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y100 = 160, would you expect the next obser
vation to be above or below the mean? 

5. 7 Consider the time series model 

y1 = 20 + c1 + 0.2E:r-l 

a. Is this a stationary time series process? 

b. Is this an invertible time series? 

c. What is the mean of the time series? 

d. If the current observation is y 100 = 23, would you expect the next observa
tion to be above or below the mean? Explain your answer. 

5.8 Consider the time series model 

Yr =50+ 0.8Yr-l + E:1 - 0.2E:r-l 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y100 = 270, would you expect the next obser
vation to be above or below the mean? 
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5.9 The data in Chapter 4, Table E4.4, exhibits a linear trend. Difference the data 
to remove the trend. 

a. Fit an ARIMA model to the first differences. 

b. Explain how this model would be used for forecasting. 

5.10 Table B. I in Appendix B contains data on the market yield on U.S. Treasury 
Securities at I 0-year constant maturity. 

a. Fit an ARIMA model to this time series, excluding the last 20 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last 20 observations. 

c. In Exercise 4.1 0, you were asked to use simple exponential smoothing with 
A = 0.2 to smooth the data, and to forecast the last 20 observations. Com
pare the ARIMA and exponential smoothing forecasts. Which forecasting 
method do you prefer? 

5.11 Table 8.2 contains data on pharmaceutical product sales. 

a. Fit an ARIMA model to this time series, excluding the last I 0 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last I 0 observations. 

c. In Exercise 4.12, you were asked to use simple exponential smoothing 
with A = 0.1 to smooth the data, and to forecast the last I 0 observations. 
Compare the ARIMA and exponential smoothing forecasts. Which fore
casting method do you prefer? 

d. How would prediction intervals be obtained for the ARIMA forecasts? 

5.12 Table B.3 contains data on chemical process viscosity. 

a. Fit an ARIMA model to this time series, excluding the last 20 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last 20 observations. 

c. Show how to obtain prediction intervals for the forecasts in part b above. 

5.13 Table B.4 contains data on the annual U.S. production of blue and gorgonzola 
cheeses. 

a. Fit an ARIMA model to this time series, excluding the last I 0 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last l 0 observations. 

c. In Exercise 4.16, you were asked to use exponential smoothing methods 
to smooth the data, and to forecast the last I 0 observations. Compare the 
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ARIMA and exponential smoothing forecasts. Which forecasting method 
do you prefer? 

d. How would prediction intervals be obtained for the ARIMA forecasts? 

5.14 Reconsider the blue and gorgonzola cheese data in Table B.4 and Exercise 
5. 13. In Exercise 4.17 you were asked to take the first difference of this data 
and develop a forecasting procedure based on using exponential smoothing 
on the first differences. Compare this procedure with the ARIMA model of 
Exercise 5.13. 

5.15 Table B.5 shows U.S. beverage manufacturer product shipments. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.16 Table B.6 contains data on the global mean surface air temperature anomaly. 
Develop an appropriate ARIMA model and a procedure for forecasting for 
these data. Explain how prediction intervals would be computed. 

5.17 Reconsider the global mean surface air temperature anomaly data shown in 
Table B.6 and used in Exercise 5.16. In Exercise 4.20 you were asked to 
use simple exponential smoothing with the optimum value of A to smooth 
the data. Compare the results with those obtained with the ARIMA model in 
Exercise 5.16. 

5.18 Table B.7 contains daily closing stock prices for the Whole Foods Market. 
Develop an appropriate ARIMA model and a procedure for these data. Explain 
how prediction intervals would be computed. 

5.19 Reconsider the Whole Foods Market data shown in Table B.7 and used in 
Exercise 5.18. In Exercise 4.22 you used simple exponential smoothing with 
the optimum value of A to smooth the data. Compare the results with those 
obtained from the ARIMA model in Exercise 5.18. 

5.20 Unemployment rate data is given in Table B.S. Develop an appropriate ARIMA 
model and a procedure for forecasting for these data. Explain how prediction 
intervals would be computed. 

5.21 Reconsider the unemployment rate data shown in Table B.S and used in 
Exercise 5.21. In Exercise 4.24 you used simple exponential smoothing with 
the optimum value of A to smooth the data. Compare the results with those 
obtained from the ARIMA model in Exercise 5.20. 

5.22 Table B.9 contains yearly data on the international sunspot numbers. Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 
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5.23 Reconsider the sunspot data shown in Table B.9 and used in Exercise 5.22. 

a. In Exercise 4.26 you were asked to use simple exponential smoothing with 
the optimum value of ).. to smooth the data, and to use an exponential 
smoothing procedure for trends. How do these procedures compare to the 
ARIMA model from Exercise 5.22? Compare the results with those obtained 
in Exercise 4.26. 

b. Do you think that using either exponential smoothing procedure would result 
in better forecasts than those from the ARIMA model') 

5.24 Table B.IO contains seven years of monthly data on the number of airline miles 
flown in the United Kingdom. This is seasonal data. 

a. Using the first six years of data, develop an appropriate ARIMA model and 
a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

5.25 Reconsider the airline mileage data in Table B.IO and used in Exercise 5.24. 

a. In Exercise 4.27 you used Winters' method to develop a forecasting model 
using the first six years of data and you made forecasts for the last 12 months. 
Compare those forecasts with the ones you made using the ARIMA model 
from Exercise 5.24. 

b. Which forecasting method would you prefer and why? 

5.26 Table B.ll contains eight years of monthly champagne sales data. This is 
seasonal data. 

a. Using the first seven years of data, develop an appropriate ARIMA model 
and a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the fore
cast errors. How well did your procedure work in forecasting the new 
data? 

5.27 Reconsider the monthly champagne sales data in Table B.ll and used in 
Exercise 5.26. 

a. In Exercise 4.29 you used Winters' method to develop a forecasting model 
using the first seven years of data and you made forecasts for the last 
12 months. Compare those forecasts with the ones you made using the 
ARIMA model from Exercise 5.26. 

b. Which forecasting method would you prefer and why? 

5.28 Montgomery et al. [ 1990] give four years of data on monthly demand for a soft 
drink. These data are given in Chapter 4, Table E4.5. 
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a. Using the first three years of data, develop an appropriate ARIMA model 
and a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

5.29 Reconsider the soft drink demand data in Table E4.5 and used in Exercise 5.28. 

a. In Exercise 4.31 you used Winters' method to develop a forecasting model 
using the first seven years of data and you made forecasts for the last 
12 months. Compare those forecasts with the ones you made using the 
ARIMA model from the previous exercise. 

b. Which forecasting method would you prefer and why? 

5.30 Table B.l2 presents data on the hourly yield from a chemical process and the 
operating temperature. Consider only the yield data in this exercise. Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.31 Table B .13 presents data on ice cream and frozen yogurt sales. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.32 Table B .14 presents the C02 readings from Mauna Loa. Develop an appropriate 
ARIMA model and a procedure for forecasting for these data. Explain how 
prediction intervals would be computed. 

5.33 Table B .15 presents data on the occurrence of violent crimes. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.34 Table B.l6 presents data on the U.S. gross domestic product (GOP). Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.35 Total annual energy consumption is shown in Table B.l7. Develop an appro
priate ARIMA model and a procedure for forecasting for these data. Explain 
how prediction intervals would be computed. 

5.36 Table B .18 contains data on coal production. Develop an appropriate A RIMA 
model and a procedure for forecasting for these data. Explain how prediction 
intervals would be computed. 

5.37 Table B.l9 contains data on the number of children 0-4 years old who drowned 
in Arizona. Develop an appropriate ARIMA model and a procedure for fore
casting for these data. Explain how prediction intervals would be computed. 
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5.38 Data on tax refunds and population are shown in Table 8.20. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.39 An ARIMA model has been fit to a time series, resulting in 

a. Suppose that we are at time period T = I 00 and v 11x1 = 31. Determine 
forecasts for periods 101, 102, 103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period 10 I turns out to be \'nn = 33. 
Revise your forecasts for periods I 02, I 03 .... using period I 0 I as the new 
origin of time. 

d. If your estimate 6 2 = 2, find a 95% prediction interval on the forecast of 
period I 01 made at the end of period 100. 

5.40 The following ARIMA model has been fit to a time series: 

_Vt = 25 + 0.8yt-l - 0.3_\'t-2 + Et 

a. Suppose that we are at the end of time period T = I 00 and we know 
that y 100 = 40 and _\'99 = 38. Determine forecasts for periods 10 I. I 02. 
103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period 101 turns out to be v101 = 35. 
Revise your forecasts for periods 102, 103, ... using period 101 as the new 
origin of time. 

d. If your estimate 6 2 = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.41 The following ARIMA model has been fit to a time series: 

S't = 25 + 0.8_\'t-1 - 0.2Et-l + Et 

a. Suppose that we are at the end of time period T = I 00 and we know that the 
forecast for period 100 was 130 and the actual observed value was -"10o = 
140. Determine forecasts for periods 101, I 02, I 03, ... from this model at 
origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period I 01 turns out to be .\'HJI = 132. 
Revise your forecasts for periods 102, I 03, ... using period I 0 I as the new 
origin of time. 
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d. If your estimate a 2 = 1.5, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.42 The following ARIMA model has been fit to a time series: 

Yt = 20 + Et + 0.45Et-l - 0.3Et-2 

a. Suppose that we are at the end of time period T = 100 and we know that the 
observed forecast error for period 100 was 0.5 and for period 99 we know 
that the observed forecast error was -0.8. Determine forecasts for periods 
1 01, 102, I 03, ... from this model at origin 1 00. 

b. What is the shape of the forecast function that evolves from this model? 

c. Suppose that the observations for the next four time periods turn out to be 
17.5, 21.25, 18.75, and 16.75. Revise your forecasts for periods 102, 103, 
... using a rolling horizon approach. 

d. If your estimate a = 0.5, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.43 The following ARIMA model has been fit to a time series: 

Yt =50+ Et + 0.5Et-l 

a. Suppose that we are at the end of time period T = 100 and we know that 
the observed forecast error for period 100 was 2. Determine forecasts for 
periods 101, 102, 103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observations for the next four time periods turn out to be 
53, 55, 46, and 50. Revise your forecasts for periods 102, 103, ... using a 
rolling horizon approach. 

d. If your estimate a = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.44 For each of the ARIMA models shown below, give the forecasting equation 
that evolves for lead times r = I, 2, ... , L. In each case, explain the shape of 
the resulting forecast function over the forecast lead time. 

a. AR(l) 

b. AR(2) 

c. MA(l) 

d. MA(2) 

e. ARMA(l, I) 

f. IMA(l, l) 

g. ARIMA( I, I, 0) 
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5.45 Use a random number generator and generate I 00 observations from the AR( I) 
model Yr = 25 + 0.8y1 _ 1 + c1 • Assume that the errors are normally and inde
pendently distributed with mean zero and variance a 2 = I. 

a. Verify that your time series is AR( I). 

b. Generate 100 observations for a N (0, I) process and add these random 
numbers to the 100 AR( 1) observations in part a to create a new time series 
that is the sum of AR( 1) and "white noise." 

c. Find the sample autocorrelation and partial autocorrelation functions for the 
new time series created in part b. Can you identify the new time series? 

d. Does this give you any insight about how the new time series might arise in 
practical settings? 

5.46 Assume that you have fit the following model: 

Yr = Yr-1 + O.?cr-1 + cr 

a. Suppose that we are at the end of time period T = 100. What is the equation 
for forecasting the time series in period I 0 I? 

b. What does the forecast equation look like for future periods I 02, I 03 .... ? 

c. Suppose that we know that the observed value of y 100 was 250 and forecast 
error in period 100 was 12. Determine forecasts for periods 10 I, 102, 103, 
... from this model at origin I 00. 

d. If your estimate a = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

e. Show the behavior of this prediction interval for future lead times beyond 
period 101. Are you surprised at how wide the interval is? Does this tell 
you something about the reliability of forecasts from this model at long lead 
times? 

5.47 Consider the AR(l) model y, = 25 + 0.75y,_ 1 + c,. Assume that the variance 
of the white noise process is a 2 = 1. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.48 Considerthe AR(l) model y, = 25 + 0.75y,_ 1 +£,.Assume that the variance 
of the white noise process is a 2 = 10. 
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a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( 1) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Compare the results from part b with the results from part b of Exercise 5.47. 
How much has changing the variance of the white noise process impacted 
the results? 

d. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

e. Compare the results from part d with the results from part c of Exercise 5.47. 
How much has changing the variance of the white noise process impacted 
the results? 

5.49 Consider the AR(2) model y1 = 25 + 0.6y1 _ 1 + 0.25Yr-2 + E1 • Assume that 
the variance of the white noise process is rr 2 = I. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( 1) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.50 Consider the MA( I) model Yr = 40 + 0.4E1_ 1 + E1 • Assume that the variance 
of the white noise process is rr 2 = 2. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.51 Consider the ARMA(l, 1) model y1 =50- 0.7y1_, + 0.5Er-l + E1 • Assume 
that the variance of the white noise process is rr 2 = 2. 
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a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoretical 
ACF and PACF. How similar to the theoretical values are the sample values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 


