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Outline

@ Alternative data research in financial forecasting?
© Spatial information asymmetry for stock forecasting
9 Abnormal posting measure and forecastabilities

@ Sentiment and topics

© Other alternative data?

Feng Li (gsm.pku.edu.cn) Financial forecasting with alternative data 1/25



Alternative data in finance?

e Alternative data research is transforming finance and investing by providing insights
beyond traditional financial metrics.

® This approach leverages non-traditional data sources to deliver a broader understanding
of market conditions, consumer behavior, and economic trends.

® Key sources of alternative data

® Web Scraping and Online Data: Social media sentiment, News articles and blogs, Job
postings and company reviews

® Satellite and Geospatial Data: Traffic patterns and store parking lot analysis, Agricultural
and weather data impacting commodities, Shipping and supply chain movements

® Mobile App and Web Traffic: App downloads and engagement metrics, Website visitor data

® Sensor & loT Data: Smart device analytics (e.g., fitness trackers), Industrial production
sensors

® Consumer Reviews & Sentiment Analysis: Amazon, Yelp, and Glassdoor reviews, Survey and
polling data
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Are alternative data useful in financial forecasting?

® The availability of short-term-oriented data can induce forecasters to optimally shift their
attention from the long term to the short term because it reduces the cost of obtaining
short-term information. (Dessaint et al., 2024, JoF)

e Alternative data vs Multimodal Data
® Multimodal Data refers to data collected from multiple sources or different types of
modalities, such as text, images, video, and structured financial data.
* While alternative data focuses on finding new sources of insights, multimodal data
focuses on combining different data types to create a more holistic understanding of
financial trends.
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My research focus

| tackle large scale forecasting challenges by developing
e Al driven forecasting methods for large spatial structures,
® detecting for non-structural, noisy and intermittent signals in spatialtemporal data,
e efficient forecast combination and reconciliation methods, and

® open source solutions for large scale data.
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Spatial information asymmetry for stock forecasting: a tale of two tastes

Asia | China  India

KFC sues Chinese firms over eight-
legged chicken rumours

®©1 June 2015

KF 4,000 restaurants i

Source: https://www.bbc.co.uk/news/world-asia-china-32964606
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Local investors and information advantage

® Local investors may enjoy an information advantage by gaining access to information
earlier that distant investors (Chi & Shanthikumar, 2017).

e After receiving information about a firm, local investors may want to communicate more
with others about this particular stock (Hirshleifer, 2020).

® The relative intensity of investors’ posting activities likely reflects local investors'’
information advantage (Ferreira et al., 2017).
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The stock posting data

® Qur data for message postings come from Guba Eastmoney, China’s preeminent stock
mes- sage board.

® Guba Eastmoney allows users to read and post messages and it identifies these users
through non-confidential IP addresses.

¢ This unique feature enables us to distinguish between local and nonlocal posters and
explore the hypothesized local information advantage via message postings.

® Qur analysis covers more than 300 million postings pertaining to 2,239 listed firms in
Chinese A-share markets ranging over 6 year (ca 200 GB raw data).
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Abnormal posting measure

* We define relative postings (RP) to measure the relative strength of posting activities by
locals and nonlocals. For firm j headquartered in city ¢, its relative postings measure in
week t is calculated as:

RPie=In(1+ PE,) —In (14 P5)

Ic

where Pf , (P %) is local (nonlocal) postings, that is, the total number of messages

posted in week t by investors in (outside) city c.

® RP has a conceptional similarity to TF-IDF (Term Frequency-Inverse Document
Frequency) in the NLP domain.

® To measure unusual changes in relative postings, we construct abnormal relative
postings (ARP)

ARP,'Qt = RPic,t — median (RPic,t—la RP,‘C71_-_2, ety RPfC,t—].O)
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ARP-based portfolio performance

® Firms in every province are sorted into quintile portfolios based on their ARP measure.

® ARP-based trading strategy is more profitable in under-developed inland regions where
firms are relatively opaque.
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Forecast the excess return

* We forecast the excess return with Fama & MacBeth (1973) models

Ricti1 = o+ BARP; ¢t + 0 Xt + €11

by identifying ARP;; (abnormal relative postings) of firm iin week t related to its
headquartered city ¢; and X;; is a vector of firm-level characteristics.

® Complex forecasting models with similar firm-level variables have been used (Li et al.,
2010; Villani et al., 2012; Li & Villani, 2013) but are computationally intensive.
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Forecasting at scale: the new normal

* Large scale data generally require distributed solutions.

® |P address, city and firm match for each post is a standard MapReduce task.

® Both RP and ARP calculations require iterating over all 300 million text data.

® Without a distributed solution, this work would take weeks to finish (Just reading the 130
GB data into memory takes one hour).

¢ Many simple models ensemble a powerful solution instead of one complex model for
everything.

® Interpretability counts when choosing appropriate models.
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Variable Definition
Posting Variables

RP Relative postings, defined as the logarithm of one plus the number of messages from local posters minus the
logarithm of one plus the number of messages from nonlocal posters
ARP Abnormal relative postings, defined as relative postings for a firm in one week minus the median value of its

relative postings in the previous ten weeks
Other Variables

AG Asset growth, defined as the annual growth rate of total assets

ALMedia Abnormal local media coverage, defined as local media coverage on a firm in a given week minus the median
value of its local media coverage in the previous ten weeks

BM Book-to-market ratio, defined as the book value of equity divided by market value of equity

EmpShare Share of industry employees, defined as the total number of employees in an industry in a given city divided by
the total number of employees in the city

ILLIQ Illiquidity measure, defined as the weekly average of the ratio of absolute daily price change to daily trading
volume

10 Institutional ownership, defined as percentage of shares outstanding owned by institutional investors

IVOL Idiosyncratic volatility, defined as the standard deviation of residuals from the Carhart (1997) four-factor model

Log(Analysts) Analyst coverage, defined as logarithm of one plus the number of analysts covering the firm in a given week

Log(GDP) Logarithm of annual GDP per capita (RMB) of a city

NPR Net purchase ratio, defined as the number of purchases minus the number of sales divided by the total number
of transactions by managers and large shareholders of a firm in a given week

PopDensity Population density of the firm's headquarters city

Reti_4.t-1 Cumulative return from week t — 4 to week t — 1

Reti—52.t-5 Cumulative return from week t — 52 to week t — 5

ROA Return on assets, defined as net income divided by total assets
Size Firm size, defined as the logarithm of market capitalization
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Ret;1 Ret; 2 Ret; 4 Reti.6 Rety g Rety 12
O] 2 ®3) (4) (5) (6) Q) (8)
ARP 0.91%**  0.86***  0.81*** 0.39%** 0.38** 0.06 0.13 0.05
(551)  (561)  (5.39) (2.88)  (257)  (0.36)  (0.94)  (0.32)
Size —-0.14%¥**  —0.05 -0.09* -0.09% -0.05 -0.08 -0.06
(-3.11)  (-1.01) (-172)  (-177)  (-1.12)  (-1.65) (-1.33)
BM 0.06 0.04 -0.02 0.02 -0.00 -0.01 0.00
(0.92)  (0.75) (-029)  (0.34)  (-0.07)  (-0.14)  (0.04)
Reti—4:4-1 —0.05%**  —0.03*** —0.05%**  —0.04*%**  —0.02%*  —0.02%* -0.01
(-3.99)  (-2.95) (-439)  (-3.87) (-257) (-2.18)  (-0.89)
Ret_52.t-5 —0.07*** -0.04 -0.04* -0.05* -0.04 -0.06** -0.06*
(-272)  (-1.49) (-1.67) (-171) (-153) (-212) (-1.02)
AG -0.06 -0.06 —0.11%%  —0.15%** Q. 16*** —0.14%**
(-1.18) (-151)  (-256) (-3.37) (-4.13) (-3.32)
ROA 0.10 -0.06 -0.62 -0.68 -0.40 -0.45
(0.22) (-0.13)  (-143) (-1.46) (-0.91)  (~0.99)
IVOL —0.13%** —0.08** -0.03 -0.03 -0.01 -0.03
(-357) (-222)  (-0.99) (-0.81)  (-0.24)  (-0.85)
ILLIQ 0.38*** 0.18*** 0.11%* 0.16*** 0.07** 0.14%**
(8.09) (480)  (242)  (362)  (198)  (3.93)
(Other variables truncated ...)
Intercept -0.06 0.91 0.44 0.82 1.06 0.47 0.86 0.80
(-0.18)  (1.63)  (0.67) (1.16)  (1.47)  (0.69)  (1.23)  (1.17)
Obs 303,361 303,361 303,361 293,425 279,472 275838 272,375 265,509
Adj. R? 0.05% 3.60% 6.39% 5.90% 5.67% 5.27% 5.07% 5.00%
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Sentiment in stock markets
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Source: https://markets.businessinsider.com/news/stocks/bullish-stock-market-signal-zweig-b
readth-thrust-indicator-just-flashed-2023-4
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Sentiment of local and nonlocal postings

* The sentiment score is efficiently calculated with the distributed MapReduce
framework.

* We first segment each sentence in a posting into words. Next, we identify sentiment
words based on a prespecified sentiment dictionary.

* For words with a positive (negative) tone, we assign a base score of 1(-1). The base score
is further weighted according to its modifier words, with weights of 4, 3, 2, and 0.5 for
the extreme, strong, moderate, and mild degrees, respectively.

® If a negative word precedes a key sentiment word, we multiply the weighted sentiment
score by -1.

Year Local Post Sentiment Non-local Post Sentiment Local — Non-local p value

2007 0.0303 0.0155 0.0148*** 0.000
2008 0.0383 0.0216 0.0167*** 0.000
2009 0.0319 0.0160 0.0160*** 0.000
2010 0.0533 0.0451 0.0083*** 0.000
2011 0.1107 0.0646 0.0461*** 0.000
2012 0.1556 0.0894 0.0662*** 0.000
2013 0.1357 0.1063 0.0294*** 0.000
All 0.0902 0.0541 0.0361%** 0.000
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Topical

Feng Li
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Intertopic Distance Map (via multidimensional scaling)
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Topical
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analysis of nonlocal posts
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# Trains a LDA model with Spark.

from pyspark.ml.clustering import LDA

# Loads data.

dataset = spark.read.format("csv").load("stockdata/*.csv")
lda = LDA(k=4, maxIter=100)

model = 1lda.fit(dataset)

11 = model.logLikelihood(dataset)

1p = model.logPerplexity(dataset)

# Describe topics.

topics = model.describeTopics(3)

print("The topics described by their top-weighted terms:")
topics.show(truncate=False)

# Shows the result

transformed = model.transform(dataset)
transformed.show(truncate=False)
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Stock returns: messages with different topics

Topic Fundamentals ~ Trading  Noises Insider
1) 2 (3) (4)
ARP 1.18%** 0.68*** 0.80 0.33
(5.96) (308)  (0.19)  (1.47)
Size -0.05 -0.05 -0.05 -0.05
(-1.05) (-1.08)  (-0.99)  (-1.03)
BM 0.05 0.05 0.04 0.05
(0.84) (0.82) (0.79) (0.83)
Rety 4.1 -0.03%** -0.03%** _0.04%**  _0,03***
(-2.84) (-2.81)  (-3.05)  (-2.95)
Ret_s2:4-5 -0.04 -0.04 -0.04 -0.04
(-1.60) (-1.57)  (-1.51)  (-1.56)
AG -0.06 -0.06 -0.06 -0.06
(-1.21) (-125)  (-1.16)  (-1.12)
ROA 0.12 0.11 0.12 0.10
(0.26) (0.25) (0.25) (0.23)
VoL -0.13%%* S0.13%%F_0.13%%k 0 13kx*
(-3.57) (-353) (-3.56) (-3.52)
ILLIQ 0.38%** 0.38¥**  .3g%**  (.3g%**
(8.17) (816)  (823)  (8.15)
10 0.04 0.04 0.04 0.04
(0.27) (0.29)  (025)  (0.24)
NPR 0.33* 0.35%* 0.36%* 0.36**
(1.91) (203)  (200)  (212)
(Other variables truncated ...)
Intercept 0.42 0.44 0.43 0.42
(0.65) (0.67) (0.65) (0.64)
Obs 303,361 303,361 303,361 303,361
Adj. R? 6.45% 6.45% 6.39% 6.39%
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Parallel processing

#!/bin/bash -1

#SBATCH -J Stocks

#SBATCH -N 6 # Number of nodes
#SBATCH —-p MCMC # Partition Used.
#SBATCH -t 10-00:00 # Runtime in D-HH:MM
#SBATCH —-mail-type=FAIL

#SBATCH --array=1-100716 # Run a job array

for STOCK in shanghai shenzhen chuangyeban zhongxiaoban
do
srun python3 main.py ${STOCK} ${STOCK}.csv $SLURM_ARRAY_TASK_ID

done
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Working in progress

® Interpretable video time series forecasting

* Forecasting methods

® Forecasting reconciliation with large hierarchical structures
® Multimodal time series forecasting

¢ Final thoughts
® The future of financial forecasting is multimodal alternative data — combining diverse
data sources to uncover hidden insights.
® With advancements in Al, NLP, and deep learning, financial firms can better leverage
multimodal alternative data to predict trends, assess risks, and make smarter investment
decisions.
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Thank you!

https://feng.1i
feng.li@gsm.pku.edu.cn
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The 45" International Symposium on

Beijing, June 29 - July 2, 2025

The International Symposium on Forecasting (ISF) is the premier forecasting con- Organizers

ference, attracting the world's leading forecasting researchers, practitioners, and The AMSS center for Forecasting Science, Chinese Academy of Sciences

students. The first ISF took place in 1981 in Quebec City, Canada. Over its 45-year Seoollor E ot AN e e er b BedianalUn Sa iy

history, the symposium has gathered in Europe, Asia-Pacific, and North and South Guanghua School of Management, Peking University

America and hosted highly respected experts in forecasting, including many Nobel School of Economics and Management, University of Chinese Academy of Sciences
laureates, through keynote speaker presentations, academic sessions, workshops,

and networking in social programs and events Academic Program

The 45th ISF will be held in Beijing, June 29 - July 2, 2025, Keynote speeches will address
interdisciplinary topics from economics, statistics, computer science and data science. There
will be a variety of choices of special sessions, workshops and summer schools to facilitate
Co-Chairs: Tao Hong, Lean Yu in-depth communication on specific topics and foster exchanges and communications.

General Chair: Yongmiao Hong

Local Chairs: Zh zt F Li
ocal Chairs: Zhengjun Zhang, Feng Li Deadlines

March 7, 2025:  Invited session proposals

March 21, 2025:  Abstract submissions

April 4, 2025: Notification of abstract acceptance/rejection
May 1, 2025 Registration deadline for accepted abstracts

Program Chairs: Jue Wang, Yanfei Kang

For further information, please consult:
1SF2025@hotmail com
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