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Flexible regression models
ï Introduction

Flexible models of the regression function E(y|x) has been an active research
field for decades.
Attention has shifted from kernel regression methods to spline-based models.
Splines are regression models with flexible mean functions.
Example: a simple spline regression with only one explanatory variable with
truncated linear basis function can be like this

y = α0 + α1x+ β1(x´ ξ1)+ + ... + βq(x´ ξq)+ + ε

where
§ (x´ ξi)+ are called the basis functions,
§ ξi are called knots (the location of the basis function).
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Flexible regression models
ï Spline example (single covariate with thinplate bases)
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Flexible regression models
ï Spline regression with multiple covariates

Additive spline model
§ Each knot ξj. (scaler) is connected with only one covariate

y = α0 +α1x1 + ...+αqxq +

 m1
ÿ

j1=1
βj1f (x1, ξj1) + ... +

mq
ÿ

jq=1
βjqf

(
xq, ξjq

)+ ε

§ Good and simple if you know there is no interactions in the data a priori.
Surface spline model

§ Each knot ξj (vector) is connected with more than one covariate

y = α0 + α1x1 + ... + αqxq +

[
m
ÿ

j=1
βjg (x1, ...xq,ξj)

]
+ ε

§ A popular choice of g (x1, ...xq,ξj) can be e.g. the multi-dimensional thinplate
spline

g (x1, ...xq,ξj) = }x´ ξj}2 ln }x´ ξj}
§ Can handle the interactions but the model complexity increase dramatically

with the interactive knots.
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The challenges

How many knots are needed?
§ Too few knots lead to a bad approximation; too many knots yield overfitting.

Where to place those knots?
§ Equal spacing for the additive model,
§ which is obviously not efficient with the surface model.

Common approaches to the two problems:
§ place enough many knots and use variable selection to pick up useful ones.

‹ not truly flexible
§ use reversible jump MCMC to move among the model spaces with different

numbers of knots
‹ very sensitive to the prior and not computational efficient

§ clustering the covariates to select knots
‹ does not use the information from the responses

How to choose between additive spline and surface spline?
§ NA
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The multivariate surface model
ï The model

The multivariate surface model consists of three different components, linear,
surface and additive as

Y = XoBo + Xs(ξs)Bs + Xa(ξa)Ba + E.

We treat the knots ξi as unknown parameters and let them move freely.
§ A model with a minimal number of free knots outperforms model with lots of

fixed knots.
For notational convenience, we sometimes write model in compact form

Y = XB+ E,

where X = [Xo,Xs,Xa] and B = [Bo
1,Bs

1,Ba
1] 1 and E „ Np(0, Σ)
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The multivariate surface model
ï The prior

Conditional on the knots, the prior for B and Σ are set as

vecBi|Σ, λi „ Nq

[
µi, Λ1/2

i ΣΛ
1/2
i b P´1

i

]
, i P to, s,au,

Σ „ IW [n0S0, n0] ,

§ Λi = diag(λi) are called the shrinkage parameters, which is used for
overcome overfitting through the prior.

§ If Pi = I, can prevent singularity problem, like the ridge regression estimate.
§ If Pi = X

1
iXi: use the covariates information, also a compressed version of

least squares estimate when λi is large.
The shrinkage parameters are estimated in MCMC

§ A small λi shrinks the variance of the conditional posterior for Bi

§ It is another approach to selection important variables (knots) and
components.

We allow to mixed use the two types priors ( Pi = I, Pi = X
1
iXi) in different

components in order to take the both the advantages of them.
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The multivariate surface model
ï The Bayesian posterior

The posterior distribution is conveniently decomposed as

p(B,Σ,ξ,λ|Y ,X) = p(B|Σ,ξ,λ,Y ,X)p(Σ|ξ,λ,Y ,X)p(ξ,λ|Y ,X).

Hence p(B|Σ,ξ,λ,Y ,X) follows the multivariate normal distribution
according to the conjugacy;
When p = 1, p(Σ|ξ,λ,Y ,X) follows the inverse Wishart distribution

IW

n0 + n,

$

&

%

n0S0 + nS̃+
ÿ

iPto,s,au
Λ
´1/2
i (B̃i ´Mi)

1Pi(B̃i ´Mi)Λ
´1/2
i

,

.

-


When p ě 2, no closed form of p(Σ|ξ,λ,Y ,X), the above result is a very
accurate approximation. Then the marginal posterior of Σ, ξ and λ is

p (Σ,ξ,λ|Y ,X) =cˆ p(ξ,λ)ˆ |Σβ|
´1/2|Σ|´(n+n0+p+1)/2|Σβ̃|

´1/2

ˆ exp
"

´
1
2

[
trΣ´1

(
n0S0 + nS̃

)
+
(
β̃´ µ

) 1
Σ´1

β

(
β̃´ µ

)]*
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The MCMC algorithm
ï Metropolis-Hastings within Gibbs

The coefficients (B) are directly sampled from normal distribution.
We update covariance (Σ), all knots (ξ) and shrinkages (λ) jointly by using
Metropolis-Hastings within Gibbs.
The proposal density for Σ is the inverse Wishart density on previous slide.
The proposal density for ξ and λ is a multivariate t-density with ν ą 2 df,

θp|θc „MVT

[
θ̂, ´

(
B2 lnp(θ|Y)
BθBθ1

)´1
ˇ

ˇ

ˇ

ˇ

ˇ

θ=θ̂

, ν
]

,

where θ̂ is obtained by R steps (R ď 3) Newton’s iterations during the
proposal with analytical gradients for matrices.
The analytical gradients are very complicated and we have implemented it in
an efficient way (the key!).
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Application to firm leverage data
ï The data

leverage (Y): total debt/(total debt+book value of equity), 4405 observations;
tang: tangible assets/book value of total assets;

market2book: (book value of total assets - book value of equity + market value of equity) / book value of total assets;
logSales: logarithm of sales;

profit: (earnings before interest, taxes, depreciation, and amortization) / book value of total assets.
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Surface component model
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Ò Models with only surface or additive components

Ñ Model with both additive and surface components.

LPDS Log predictive density score which is defined as

LPDS=
1
D

ÿD
d=1 lnp(Ỹd|Ỹ´d ,X)

=

ż

ź

iPτd
p(yi|θ,xi)p(θ|Ỹ´d)dθ,

and D= 5 in the cross-validation.
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Application to firm leverage data
ï Posterior mean surface(left) and standard deviation(right)
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Extensions and future work

The model and the methods we used are very general.
It is easy to generalize the model to GLM framework.
Variable selection is possible for knots.
Dirichlet precess prior can be plugged into the model when heteroscedasticity
is the problem.
And the copula...
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