
Chapter 7

• 7.1 Measures of predictive accuracy

• 7.2 Information criteria and cross-validation

• 7.3 Model comparison based on predictive performance

• 7.4 Model comparison using Bayes factors

• 7.5 Continuous model expansion / sensitivity analysis

• 7.5 Example (may be skipped)
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Predictive performance

True predictive performance is found out by using it to
make predictions and comparing predictions to true
observations

external validation
Expected predictive performance

approximates the external validation
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Predictive performance

We need to choose the utility/cost function
Application specific utility/cost functions are important

eg. money, life years, quality adjusted life years, etc.

If are interested overall in the goodnes of the predictive
distribution, or we don’t know (yet) the application specific
utility, then good information theoretically justified choice is
log-score

log p(y rep|y ,M),
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Ways to estimate the predictive performance

• Data estimate (within-sample)
- use same data to form the posterior and to test the

performance
- corresponds to “training error”

• Partial predictive
- split data in two parts
- use one part to form the posterior and the other part to

test the performance
- corresponds to “test error”

• Cross-validation
- improved version of partial approach
- divide data in several parts, can be also n parts
- use different parts to form posterior and to test

performance

• Information criterion
- compute correction term to data estimate
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Why model selection?

• Assume a model rich enough capturing lot of uncertainties

- e.g. Bayesian model average (BMA) or non-parametric
- model criticism and predictive assessment done
→ if we are happy with the model, no need for model

selection

- Box: “All models are wrong, but some are useful”
- there are known unknowns and unknown unknowns

• Model selection

- what if some smaller (or more sparse) or parametric
model is practically as good?

- which uncertainties can be ignored?
(e.g. Student-t vs. Gaussian, irrelevant covariates)

→ reduced measurement cost, simpler to explain
(e.g. less biomarkers, and easier to explain to doctors)
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Predictive model selection

• Goodnes of the model is evaluated by its predictive
performance

• Select a simpler model whose predictive performance is
similar to the rich model
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Predictive model

• p(ỹ |x̃ ,D,Mk ) is the posterior predictive distribution

- p(ỹ |x̃ ,D,Mk ) =
∫

p(ỹ |x̃ , θ,Mk )p(θ|D, x̃ ,Mk )dθ
- ỹ is a future observation
- x̃ is a future random or controlled covariate value
- D = {(x (i), y (i)); i = 1,2, . . . ,n}
- Mk is a model
- θ denotes parameters
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Predictive performance

• Future outcome ỹ is unknown (ignoring x̃ in this slide)

• With a known true distribution pt (ỹ), the expected utility
would be

ū(a) =

∫
pt (ỹ)u(a; ỹ)dỹ

where u is utility and a is action (in our case, a prediction)

• Bayes generalization utility

BUg =

∫
pt (ỹ) log p(ỹ |D,Mk )dỹ

where a = p(·|D,Mk ) and u(a; ỹ) = log(a(ỹ))

- a is to report the whole predictive distribution
- utility is the log-density evaluated at ỹ
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Bayesian predictive methods

• Many ways to approximate

BUg =

∫
pt (ỹ) log p(ỹ |D,Mk )dỹ

for example

- Bayesian cross-validation
- WAIC
- reference predictive methods (* not in the course)

• See Aki Vehtari and Janne Ojanen (2012). A survey of
Bayesian predictive methods for model assessment,
selection and comparison. Statistics Surveys, 6:142-228,
http://dx.doi.org/10.1214/12-SS102 for other methods.
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M-open,-closed,-completed

• Following Bernardo & Smith (1994), there are three
different approaches for dealing with the unknown pt

- M-open
- M-closed
- M-completed
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M-open

• Explicit specification of pt (ỹ) is avoided by re-using the
observed data D as a pseudo Monte Carlo samples from
the distribution of future data

• For example, Bayes leave-one-out cross-validation

LOO =
1
n

n∑

i=1

log p(yi |xi ,D−i ,Mk )
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Cross-validation

• Bayes leave-one-out cross-validation

LOO =
1
n

n∑

i=1

log p(yi |xi ,D−i ,Mk )

- different part of the data is used to update the
posterior and assess the performance

- almost unbiased estimate for a single model

E[LOO(n)] = E[BUg(n − 1)]

expectation is taken over all the possible training sets
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Cross-validation

• Naïve computation requires computation of n posteriors

• Less computation with

- analytic solutions and approximations available for
some models

- importance sampling using the full posterior as the
proposal (easy to use with Stan)

- k -fold cross-validation

- most robust
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Leave-one-out cross-validation

• Special case is if we leave only one data point out
(LOO-CV)

• LOO predictive density evaluated at yi

p(yi |xi ,D−i) =

∫
p(yi |xi , θ)p(θ|D−i)dθ,

where D−i is all the data except (yi , xi)

- leave-one-out posterior p(θ|D−i) is close to full
posterior p(θ|D), but we still avoid the double use of
data

- naïve implementation requires to do the posterior
inference n times

14 / 36



Importance sampling

• LOO predictive density evaluated at yi

p(yi |xi ,D−i) =

∫
p(yi |xi , θ)p(θ|D−i)dθ,

• Having samples θs from p(θs|D)

p(yi |xi ,D−i) ≈
∑S

s=1 p(yi |θs)ws
i∑S

s=1 ws
i

,

where ws
i are importance weights

ws
i =

p(θs|xi ,D−i)

p(θs|D)
∝ 1

p(yi |θs)
.
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Truncated importance sampling

• The variance of the importance weights ws in IS-LOO can
be large or even infinite

• Truncated importance sampling with truncated weights

w̃s = min(w̃s,
√

Sw̄)

has a finite variance but also some optimistic bias
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Pareto smoothed importance sampling

• The variance of the importance weights in IS-LOO can be
large or even infinite

• By fitting a generalized Pareto distribution to the tail of the
weight distribution

- obtain an estimate of the shape parameter k
- if k < 1

2 variance is finite, the central limit theorem
holds

- if 1
2 ≤ k < 1 variance is infinite but mean exists, the

generalized central limit theorem holds
- if k ≥ 1 variance and mean do not exist, the truncated

estimate will have a finite variance but considerable
bias

- variance of the IS estimate can be reduced by Pareto
smoothing the weights→ PSIS-LOO
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Pareto smoothed importance sampling
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Aki Vehtari, Andrew Gelman and Jonah Gabry (2016). Efficient
implementation of leave-one-out cross-validation and WAIC for
evaluating fitted Bayesian models. In Statistics and Computing,
doi:10.1007/s11222-016-9696-4. arXiv preprint
arXiv:1507.04544. http://arxiv.org/abs/1507.04544 18 / 36
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k -fold-CV

• Instead of leaving one observation out, leave a block of
observations

• When data is divided in k blocks the approach is called
k -fold-CV

• If, for example, k = 10, then 90% of data is used to form
the posterior, which often produces similar posterior as full
data

• k -fold-CV shoud be used

- if PSIS-LOO diagnostics indicate problems with
importance sampling

- if the prediction task is for groups
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Widely applicable information criterion

• Bayes generalization utility

BUg =

∫
pt (ỹ) log p(ỹ |D,Mk )dỹ

• Bayes training utility

BUt =
1
n

n∑

i=1

log p(yi |xi ,D,Mk )

- biased (overoptimistic) estimate of BUg

• Information criteria approach considers a bias correction to
this, to get unbiased estimate of

• Bias correction in information criteria is related to the
effective number of parameters
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Widely applicable information criterion

• Watanabe (2009,2010abc) proposed Widely applicable
information criterion (WAIC)

- WAIC has two alternative approximations

WAICG = BUt − 2(BUt −GUt )

WAICV = BUt − V/n

where GUt is Gibbs utility

GUt =
1
n

n∑

i=1

∫
p(θ|D,Mk ) log p(yi |xi , θ,Mk )dθ

and V is functional variance

V =
n∑

i=1

{
Eθ|D,Mk

[
(log p(yi |xi , θ,Mk ))2

]

−
(
Eθ|D,Mk

[log p(yi |xi , θ,Mk )]
)2

}

21 / 36



Widely applicable information criterion

• WAIC has two alternative approximations

WAICG = BUt − 2(BUt −GUt )

WAICV = BUt − V/n

- these bias corrections are related to how much the
model has fitted to the data, and thus thay have been
considred as measures of effective number of
parameters in the model
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WAIC and effective number of parameters

• Widely applicable information criterion (WAIC)

- only the full data posterior is needed
- WAIC is asymptotically equal to BUg and LOO

E[WAIC(n)] = E[BUg(n)] + o(1/n)

E[LOO(n)] = E[BUg(n − 1)]

- WAICG and WAICV are asymptotically equal, but the
series expansion of WAICV has closer resemblance to
the series expansion of LOO

- in experiments WAICV has also shown to be better
than WAICG
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WAIC and Cross-validation

• WAIC and Bayesian cross-validation

- both are Bayesian because the focus is on predictive
distributions

- even if the Bayesian word is dropped, if the focus is on
predictive distributions, CV and LOO-CV are fully
Bayesian

• WAIC and (PS)IS-LOO have same computation time

- PSIS-LOO has better properties

• Exact LOO or k -fold-CV more robust than WAIC or
PSIS-LOO
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8 schools example

• A simple hierarchical model

yi ∼ N(θi , σ
2
i )

θi ∼ N(µ, τ2), i = 1, . . . ,n = 8

with a uniform prior distribution on (µ, τ)
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8 schools example
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8 schools example
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Arsenic well example – Model comparison
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An estimated difference in elpdloo of 16.4 with a standard error
of 4.4.

Aki Vehtari, Andrew Gelman and Jonah Gabry (2016). Efficient
implementation of leave-one-out cross-validation and WAIC for evaluating
fitted Bayesian models. In Statistics and Computing,
doi:10.1007/s11222-016-9696-4. arXiv preprint arXiv:1507.04544.
http://arxiv.org/abs/1507.04544 28 / 36
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Radon example

PSIS-LOO diagnostics
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Aki Vehtari, Andrew Gelman and Jonah Gabry (2016). Efficient
implementation of leave-one-out cross-validation and WAIC for evaluating
fitted Bayesian models. In Statistics and Computing,
doi:10.1007/s11222-016-9696-4. arXiv preprint arXiv:1507.04544.
http://arxiv.org/abs/1507.04544 29 / 36
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AIC / DIC

• AIC: predictions using the maximum likelihood estimate

- bias correction using full number of parameters

• DIC: predictions using the posterior mean estimate
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Selection induced bias

• Selection induced bias in LOO-CV

- same data is used to assess the performance and
make the selection

- the selected model fits more to the data
- the LOO-CV estimate for the selected model is biased
- recognised already, e.g., by Stone (1974)

• Same holds for many other methods, e.g., DIC/WAIC

• Performance of the selection process itself can be
assessed using two level cross-validation, but it does not
help choosing better models

• Bigger problem if there is a large number of models as in
covariate selection
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Selection induced bias – Toy example

0 25 50
−3.5

−2.5

−1.5

−0.5

n = 20

0 25 50
−3.3

−2.4

−1.5

n = 50

0 25 50
−2.2

−1.8

−1.4

n = 100

32 / 36



Selection induced bias – Crime data
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Other forms of model selection / hypothesis testing

• Marginal posterior probabilities and intervals

- problems when posterior dependencies, e.g. due to
correlation of covariates

• Bayes factor & evidence

- sensitive to prior as seen from the predictive
interpretation
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Bayes factor

• Marginal likelihood in Bayes factor is also a predictive
criterion

- chain rule

p(y |Mk ) = p(y1|Mk )p(y2|y1,Mk ), . . . ,p(yn|y1, . . . , yn−1,Mk )

• Sensitive to the first terms, and not defined if the prior is
improper

- especially problematic to use for models with large
difference in the number of parameters
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