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Today we are going to learn...

1 Markov Chains

2 Metropolis Algorithm

3 Metropolis-Hastings

4 Multiple variables

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 2 / 66



Markov Chains

• The goal of today’s lecture is to learn about the Metropolis Hastings
algorithm

• The Metropolis Hastings algorithm allows us to simulate from any
distribution as long as we have the kernel of the density of the distribution.

• To understand the Metropolis Hastings algorithm, we must learn a little bit
about Markov chains
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Basic Probability Rules

• Law of conditional probability

Pr(A = a,B = b) = Pr(A = a|B = b)Pr(B = b) (1)

• More general conditional probability

Pr(A = a,B = b|C = c) = Pr(A = a|B = b,C = c)ˆ

Pr(B = b|C = c) (2)
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Basic Probability Rules

• Marginalizing (for a discrete variable)

Pr(A = a) =
ÿ

b

Pr(A = a,B = b) (3)

• More general

Pr(A = a|C = c) =
ÿ

b

Pr(A = a,B = b|C = c) (4)
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Independence

• Two variables are independent if

Pr(A = a,B = b) = Pr(A = a)Pr(B = b) @a,b (5)

• Dividing both sides by Pr(B=b) gives

Pr(A = a|B = b) = Pr(A = a) @a,b (6)

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 6 / 66



Conditional Independence

• Two variables A and B are Conditionally Independent if

Pr(A = a,B = b|C = c) = Pr(A = a|C = c)ˆ

Pr(B = b|C = c) @a,b, c (7)

• Dividing both sides by Pr(B = b|C = c) gives

Pr(A = a|B = b,C = c) = Pr(A = a|C = c) @a,b, c (8)
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A simple game

• Player A and Player B play a game. The probability that Player A wins each
game is 0.6 and the probability that Player B wins each game is 0.4.

• They play the game N times.
• Each game is independent.
• Let

• Xi = 0 if Player A wins game i
• Xi = 1 if Player B wins game i

• Also assume there is an initial Game called Game 0 (X0)
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Some simple questions

• What is the probability that Player A wins Game 1 ((X1 = 0)) if
• If X0 = 0 (Player A wins Game 0)
• If X0 = 1 (Player B wins Game 0)

• What is the probability that Player A wins Game 2 ((X2 = 0)) if
• If X0 = 0 (Player A wins Game 0)
• If X0 = 1 (Player B wins Game 0)

• Since each game is independent all answers are 0.6.
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A different game: A Markov chain

• Now assume that both players have a better chance of winning Game i+ 1 if
they already won Game i.

Pr(Xi+1 = 0|Xi = 0) = 0.8 (9)
Pr(Xi+1 = 1|Xi = 1) = 0.7 (10)

• Assume nothing other than game i has a direct effect on Game i+ 1.
• This is called the Markov Property. Mathematically

Pr(Xi+1|Xi,Xi´1, . . . ,X1,X0) = Pr(Xi+1|Xi) (11)

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 10 / 66



Markov Property

• Another way to define the Markov property is to notice that Xi+1 and
Xi´1, . . . ,X0 are independent conditional on Xi

• This may be a model for the stock market, all the valuable information about
tomorrow’s stock price is contained in today’s price.

• This is related to the Efficient Market Hypothesis, a popular theory in
finance.

• Now back to the simple game.
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Simulating from a Markov chain

• Now let’s simulate a sequence X1,X2, . . . ,X100 from the Markov chain.
• Initialize at x0 = 0. Then inside a loop
• Code the following using if.

• if Xi = 0 then Xi+1 =

"

0 with probability 0.8
1 with probability 0.2

• if Xi = 1 then Xi+1 =

"

0 with probability 0.3
1 with probability 0.7

• Try it
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Markov chain
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Simple questions again

• What is the probability that Player A wins the first game (i.e (X1 = 0)) if
• If X0 = 0 (Player A wins initial game)
• If X0 = 1 (Player B wins initial game)

• The answers are 0.8 and 0.3.
• What is the probability that Player A wins the second game (X2 = 0) if

• If X0 = 0 (Player A wins initial game)
• If X0 = 1 (Player B wins initial game)
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Solution

• Let X0 = 0. Then Pr(X2 = 0|X0 = 0)

=
ÿ

x1=0,1
Pr(X2 = 0,X1 = x1|X0 = 0)

=
ÿ

x1=0,1
Pr(X2 = 0|X1 = x1,X0 = 0)Pr(X1 = x1|X0 = 0)

=
ÿ

x1=0,1
Pr(X2 = 0|X1 = x1)Pr(X1 = x1|X0 = 0)

= 0.8ˆ 0.8 + 0.3ˆ 0.2
= 0.7

• What if X0 = 1?
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Recursion

• Notice that the distribution of Xi depends on X0

• The sequence is no longer independent.
• How could you compute Pr(Xn = 0|X0 = 0) when n = 3, when n = 5, when
n = 100?

• This is hard, but the Markov Property does make things simpler
• We can use a recursion to compute the probability that Player A wins any

game.
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Recursion

Note that Pr(Xi = 0|X0 = 0)

=
ÿ

xi´1

Pr(Xi = 0,Xi´1 = xi´1|X0 = 0)

=
ÿ

xi´1

Pr(Xi = 0|Xi´1 = xi´1,X0 = 0)Pr(Xi´1 = xi´1|X0 = 0)

=
ÿ

xi´1

Pr(Xi = 0|Xi´1 = xi´1)Pr(Xi´1 = xi´1|X0 = 0)

We already applied this formula when i = 2. We can continue for i = 3, 4, 5, . . . ,n
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Recursion

Pr(Xi = 0|X0 = 0) =
ÿ

xi´1

Pr(Xi = 0|Xi´1 = xi´1)Pr(Xi´1 = xi´1|X0 = 0)

• Start with Pr(X1 = 0|X0 = 0)
• Get Pr(X1 = 1|X0 = 0)
• Use these in formula with i = 2
• Get Pr(X2 = 0|X0 = 0)
• Get Pr(X2 = 1|X0 = 0)
• Use these in formula with i = 3
• Get Pr(X3 = 0|X0 = 0)

•
...

...
...

...
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Matrix Form

It is much easier to do this calculation in matrix form (especially when X is not
binary). Let P be the transition matrix

Xi = 0 Xi = 1
Xi´1 = 0 Pr(Xi = 0|Xi´1 = 0) Pr(Xi = 1|Xi´1 = 0)
Xi´1 = 1 Pr(Xi = 0|Xi´1 = 1) Pr(Xi = 1|Xi´1 = 1)
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Matrix Form

In our example:

Xi = 0 Xi = 1
Xi´1 = 0 0.8 0.2
Xi´1 = 1 0.3 0.7

P =

(
0.8 0.2
0.3 0.7

)
(12)
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Matrix Form

Let πi be a 1ˆ 2 row vector which denotes the probabilities of each player
winning Game i conditional on the initial Game

πi = (Pr(Xi = 0|X0), Pr(Xi = 1|X0)) (13)

In our example if X0 = 0

π1 = (0.8, 0.2) (14)

In our example if X0 = 1

π1 = (0.3, 0.7) (15)
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Recursion in Matrix form

• The recursion formula is

πi = πi´1P (16)

Therefore

πn = π1P ˆ P ˆ . . .ˆ P (17)

• Now code this up in R.
• What is Pr(Xn = 0|X0 = 0) when

• n = 3
• n = 5
• n = 100?

• Do the same when X0 = 1
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Convergence?

• For n = 3 and n = 5, the starting point made a big difference.
• For n = 100 it did not make a big difference.
• Could this Markov chain be converging to something?
• Now write code to keep the values of πi for i = 1, 2, . . . , 100.
• Then plot the values of πi1 against i
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Convergence
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More Questions

• What is Pr(X100 = 0|X0 = 0)?
• What is Pr(X100 = 0|X0 = 1)?
• What is Pr(X1000 = 0|X0 = 0)?
• What is Pr(X1000 = 0|X0 = 1)?
• The answer to all of these is 0.6.
• The X do not converge. They keep changing from 0 to 1. The Markov chain

however converges to a stationary distribution.
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Simulation with a Markov chain

• Go back to your code for generating a Markov chain and generate a chain
with n = 110000

• Exclude the first 10000 values of Xi and keep the remaining 100000 values.
• How many Xi = 0? How many Xi = 1
• We have discovered a new way to simulate from a distribution with

Pr(Xi = 0) = 0.6 and Pr(Xi = 1) = 0.4
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Markov Chains

• Sometimes two different Markov chains converge to the same stationary
distribution. See what happens when

P =

(
0.9 0.1

0.15 0.85

)
(18)

• Sometimes Markov chains do not converge to a stationary distribution at all.
• Some Markov chains can get stuck in an absorbing state. For example what

would the simple example look like if Pr(Xi+1 = 0|Xi = 0) = 1?
• Markov chains can be defined on continuous support as well, Xi can be

continuous.
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Some important points

• This is a very complicated way to generate from a simple distribution.
• For the binary example the direct method would be better.
• However for other examples, either the direct method or accept/reject

algorithm do not work.
• In these cases we can construct a Markov chain that has a stationary

distribution that is our target distribution.
• All we need is the kernel of the density function, and an algorithm called the

Metropolis Algorithm
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Normalizing Constant and Kernel

What are the normalizing constant and kernel of the Beta density?

Beta(x;a,b) = Γ(a+ b)

(Γ(a)Γ(b))
xa´1(1´ x)b´1 (19)
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The Metropolis algorithm

• The Metropolis algorithm was developed in a 1953 paper by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller.

• The aim is to simulate x „ p(x) where p(x) is called the target density.
• We will need a proposal density q(x[old] Ñ x[new])

• For example one choice of q is

x[new] „ N(x[old], 1) (20)

• This is called a Random Walk proposal
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Symmetric proposal

• An important property of q in the Metropolis algorithm is symmetry of the
proposal

q(x[old] Ñ x[new]) = q(x[new] Ñ x[old]) (21)

• Later we will not need this assumption
• Can you confirm this is true for x[new] „ N(x[old], 1)?
• Can you simulate from this random walk (use x0 = 0 as a starting value)?
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Proof of symmetry of random walk

The proposal

q(x[old] Ñ x[new]) = (2π)´1/2exp

"

´
1
2

(
x[new] ´ x[old]

)2
*

(22)

= (2π)´1/2exp

"

´
1
2

[
´1
(
x[new] ´ x[old]

)]2
*

(23)

= (2π)´1/2exp

"

´
1
2

(
x[old] ´ x[new]

)2
*

(24)

= q(x[new] Ñ x[old]) (25)
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Accept and reject

• By itself the random walk will not converge to anything.
• To make sure this Markov chain converges to our target, we need to include

the following.
• At step i+ 1 set x[old] = x[i].
• Generate x[new] „ N(x[old], 1) and compute

α = min

(
1, p(x

[new])

p(x[old])

)
(26)

• Then
• Set x[i+1] to x[new] with probability α (accept)
• Set x[i+1] to x[old] with probability 1´ α (reject)
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Code it up

• Use the Metropolis algorithm with a random walk proposal to simulate a
sample from the standard t distribution with 5 df.

• The target density is

p(x) =

[
1 +

x2

5

]´3

(27)

• Simulate a Markov chain with 110000 iterates using the random walk as a
proposal.

• The first 10000 iterates are the burn-in and will be left out because the
Markov chain may not have converged yet.

• Use x0 = 0 as a starting value
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Some diagnostics - Convergence

• There a few diagnostics we can use to investigate the behaviour of the chain
• One is a trace plot (including burn in), which is simply a line plot of the

iterates.
• Plot this for your Markov chain
• Another diagnostic is the Geweke diagnostic which can be found in the R

package coda.
• The Geweke diagnostic tests the equality of the means of two different parts

of the chain (excluding burn-in). The test statistic has a standard normal
distribution.

• Rejecting this test is evidence that the chain has not converged
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Trace Plot
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The effect of starting value

• Now rerun the code with a starting value of X0 = 100
• Does the chain still converge?
• Does it converge quicker or slower?
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Trace Plot
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Trace Plot

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
20

40
60

80
10

0
12

0

Initial Value =100, Proposal S.D. =1

x

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 39 / 66



The effect of proposal variance

• Keep the starting value of X0 = 100
• No change the standard deviation of the proposal to 3.
• Does the chain still converge?
• Does it converge quicker or slower?
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Trace Plot
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Trace Plot
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Huge proposal variance

• Maybe you think the best strategy is to choose a huge standard deviation.
• Try to use a proposal standard deviation of 100. Plot a trace plot of the

chain.
• The plot is rejecting many iterates. This must be inefficient
• Change your code to compute the percentage of times a new iterate is

accepted (excluding burn in).
• Use x0 = as an initial value. What is the acceptance rate when the proposal

standard deviation is 1? What is the acceptance rate when the proposal
standard deviation is 100?
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Trace Plot
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Acceptance Rate

• If the proposal variance is too high
• Values will be proposed that are too far into the tails of the stationary

distribution
• The Metropolis algorithm will mostly reject these values.
• The sample will still come from the correct target distribution but this is a

very inefficient way to sample.
• What happens if a very small proposal variance is used.
• Try a proposal variance of 0.001. What is the acceptance rate?
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Trace Plot
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Acceptance Rate

• The acceptance rate is almost 1.
• However is this a good proposal?
• The jumps made by this proposal are too small, and do not sample enough

iterates from the tails of the distribution.
• If it runs long enough the Markov chain will provide a sample from the target

distribution. However, it is very inefficient.
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Random Walk proposal

• For a random walk proposal it is not good to have an acceptance rate that is
too high or too low.

• What exactly is too high and too low?
• It depends on many things including the target and proposal.
• A rough rule is to aim for an acceptance rate between 20% and 70%
• If your acceptance rate is outside this range the proposal variance can be

doubled or halved
• There are better (but more complicated) ways to do this.
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Monte Carlo Error

• Now that there is a sample. X[1],X[2], . . . ,X[M] „ p(x). What can it be used
for?

• We can estimate the expected value E(X)
• This can be done by taking:

E(X) «
1
M

M
ÿ

i=1
X[i]

• Note we use « instead of =. There is some error since we are estimating
E(X) based on a sample.

• Luckily we can make this smaller by generating a bigger sample.
• We call this Monte Carlo error.
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Measuring Monte Carlo Error

• One way to measure Monte Carlo Error is the variance of the sample mean.

Var
(

1
M

M
ÿ

i=1
X[i]

)
=

1
M2 Var

(
M
ÿ

i=1
X[i]

)

=
1
M2

M
ÿ

i=1
Var(X[i])

=
Var(X)
M

• A sample from a Markov chain is correlated
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Measuring Monte Carlo Error

• One way to measure Monte Carlo Error is the variance of the sample mean.

Var
(

1
M

M
ÿ

i=1
X[i]

)
=

1
M2 Var

(
M
ÿ

i=1
X[i]

)

=
1
M2

M
ÿ

i=1
Var(X[i]) +

2
M2

M
ÿ

i=1

ÿ

jąi

cov(X[i],X[j])

=
Var(X)
M

+
2
M2

M
ÿ

i=1

ÿ

jąi

cov(X[i],X[j])

• A sample from a Markov chain is correlated
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Monte Carlo efficiency

• It is better to have lower correlation in the Markov chain.
• The efficiency of the chain can be measured using the effective sample size.
• The effective sample size can be computed using the function effectiveSize in

the R Package coda.
• Obtain an effective sample size for your sample (excluding burn in) where

• Proposal S.D. =1
• Proposal S.D. =5

• My answers were about 6000 and 18000 and yours should be close to that
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Interpret Effective Sample Size

• What does it mean to say a Monte Carlo with a sample size of 100000 has an
effective sample size (ESS) of just 6000?

• The sampling error of a correlated sample of 100000 is equal to the sampling
error of an independent sample of 6000.

• Mathematically

Var
(

1
M

M
ÿ

i=1
X[i]

)
=

Var(X)
M

+
2
M2

M
ÿ

i=1

M
ÿ

jąi

cov(X[i],X[j]) =
Var(X)
Meff

• It is a useful diagnostic for comparing two different proposal variances. A
higher ESS implies a more efficient scheme.
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Non-Symmetric proposal

• In 1970, Hastings proposed an extension to the Metropolis Hastings
algorithm.

• This allows for the case when

q(x[old] Ñ x[new]) ‰ q(x[new] Ñ x[old]) (28)

• The only thing that changes is the acceptance probability

α = min

(
1, p(x

[new])q(x[new] Ñ x[old])

p(x[old])q(x[old] Ñ x[new])

)
(29)

• This is called the Metropolis-Hastings algorithm

Feng Li (SAM.CUFE.EDU.CN) Statistical Computing 53 / 66



An interesting proposal

• Suppose we use the proposal:

xnew „ N(0,
a

(5/3)) (30)

• What is q(x[old] Ñ x[new])?
• It is q(x[new]) where q(.) is the density of a N(0,

a

(5/3)).
• Is this symmetric?
• No, since generally q(x[new]) ‰ q(x[old])
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Metropolis Hastings

• Code this where p(.) is the standard t density with 5 d.f, and q(.) is normal
with mean 0 and standard deviation 5/3.

• Inside a loop
• Generate x[new] „ N(0,

a

(5/3))
• Set xold = x[i] and compute

α = min

(
1, p(x

[new])q(x[old])

p(x[old])q(x[new])

)
(31)

• Set x[i+1] to x[new] with probability α (accept)
• Set x[i+1] to x[old] with probability 1´ α (reject)

• Try it
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Comparison

• The Effective Sample Size of this proposal is about 43000 much higher than
the best random walk proposal.

• Why does it work so well?
• The standard t distribution with 5 df has a mean of 0 and a standard

deviation of
a

(5/3)
• So the N(0,

a

(5/3)) is a good approximation to the standard student t with
5 df.
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Laplace Approximation

Using a Taylor expansion of lnp(x) around the point a

lnp(x) « lnp(a) +
Blnp(x)

Bx

ˇ

ˇ

ˇ

ˇ

x=a

(x´ a) +
1
2
B2lnp(x)

Bx2

ˇ

ˇ

ˇ

ˇ

x=a

(x´ a)2

Let a be the point that maximises lnp(x) and let

b = ´

(
B2lnp(x)

Bx2

ˇ

ˇ

ˇ

ˇ

x=a

)´1

(32)
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The approximation is

lnp(x) « lnp(a)´
1

2b (x´ a)
2

Taking exponential of both sides

p(x) « kˆ exp

[
´
(x´ a)2

2b

]
Any distribution can be approximated by a normal distribution with mean a and
variance b where a and b values can be found numerically if needed.
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Exercise: Generating from skew normal

• The density of the skew normal is

p(x) = 2φ(x)Φ(δx) (33)

where φ(x) is the density of the standard normal Φ(x) is the distribution of
the standard normal.

• Using a combination of optim, dnorm and pnorm find the Laplace
approximation of the skew normal when δ = 3

• Use it to generate a sample from the skew normal distribution using the
Metropolis Hastings algorithm.
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Indirect method v Metropolis Hastings

• Some similarities are:
• Both require a proposal
• Both are more efficient when the proposal is a good approximation to the

target.
• Both involve some form of accepting/rejecting

• Some differences are:
• Indirect method produces an independent sample, MH samples are correlated.
• Indirect method requires p(x)/q(x) to be finite for all x.
• MH works better when x is a (high-dimensional vector).

• Why?
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Multiple variables

• Suppose we now want to sample from a bivariate distribution p(x, z)
• The ideas involved in this section work for more than two variables.
• It is possible to do a 2-dimensional random walk proposal. However as the

number of variables goes up the acceptance rate becomes lower.
• Also the Laplace approximation does not work as well in high dimensions.
• Indirect methods of simulation suffer from the same problem.
• We need a way to break the problem down.
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Method of composition

• Markov chain methods, allow us to break multivariate distributions down.
• If it is easy to generate from p(x) then the best way is Method of

composition. Generate
• x[i] „ p(x)
• z[i] „ p(z|x = x[i])

• Sometimes p(x) is difficult to get
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Gibbs Sampler

• If it is easy to simulate from the conditional distribution f(x|z) then that can
be used as a proposal

• What is the acceptance ratio?

α =

(
1, p(x

new, z)p(xold|z)
p(xold, z)p(xnew|z)

)
=

(
1, p(x

new|z)p(z)p(xold|z)

p(xold|z)p(z)p(xnew|z)

)
= 1
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Gibbs Sampler

• This gives the Gibbs Sampler
• Generate x[i+1] „ p(x[i+1]|z[i])
• Generate z[i+1] „ p(z[i+1]|x[i+1])
• Repeat

• x and z can be swapped around.
• It works for more than two variables.
• Always make sure the conditioning variables are at the current state.
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Metropolis within Gibbs

• Even if the individual conditional distributions are not easy to simulate from,
Metropolis Hastings can be used within each Gibbs step.

• This works very well because it breaks down a multivariate problem into
smaller univariate problems.

• We will practice some of these algorithms in the context of Bayesian Inference
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Summary

• You should be familiar with a Markov chain
• You should understand this can have a stationary distribution
• You should have a basic understanding of the Metropolis Hastings and the

special cases
• Random Walk Metropolis
• Laplace approximation
• Gibbs Sampler
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