
Model checking

6.1 The place of model checking in applied Bayesian
statistics
6.2 Do the inferences from the model make sense?
6.3 Posterior predictive checking
6.4 Graphical posterior predictive checks (can be skipped)
6.5 Model checking for the educational testing example
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Model checking

demo6_1.m: Posterior predictive checking - light speed
demo6_2.m: Posterior predictive checking - sequential
dependence
demo6_3.m: Posterior predictive checking - poor test
statistic
demo6_4.m: Posterior predictive checking - marginal
predictive p-value
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Model checking – overview

Sensibility with respect to additional information not used
in modeling

e.g., if posterior would claim that hazardous chemical
decreases probability of death

External validation
compare predictions to completely new observations
cf. relativity theory predictions

Internal validation
e.g. posterior predictive checking
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Posterior predictive checking – example

Newcomb’s speed of light measurements
model y ∼ N(µ, σ2)
prior (µ, logσ) ∝ 1

demo6_1.m
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Replicates vs. future observation

Predictive ỹ is the next not yet observed possible
observation. y rep refers to replicating the whole experiment
(with same values of x) and obtaining as many replicated
observations as in the original data.
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Posterior predictive checking

Data y
Parameters θ
Replicated data y rep

assume that the data has been generated by a process
which can be well described by the model M with
parameters θ
replicated data could be observed if the experiment were
repeated
replace “true” data generating process by the model

p(y rep|y ,M) =

∫
p(y rep|θ,M)p(θ|y ,M)dθ

Test quantity (or discrepancy measure) T (y , θ)
summary quantity used to compare the observed data and
replicates from the predictive distribution
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Posterior predictive checking

Posterior predictive p-value

p = Pr(T (y rep, θ) ≥ T (y , θ)|y)

=

∫ ∫
IT (y rep,θ)≥T (y ,θ)p(y rep|θ)p(θ|y)dy repdθ

where I is an indicator function
having (y rep l , θl) from the posterior predictive distribution,
easy to compute

T (y rep l , θl) ≥ T (y , θl), l = 1, . . . ,L

Posterior predictive p-value (ppp-value) estimated whether
difference between the model and data could arise by
chance
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Posterior predictive checking – example

Independence in binomial experiment
model y ∼ Bin(θ,1))
prior θ ∼ Beta(1,1)

Observations in order: 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0
T = the number switches in the series

observed T (y) = 3
if the observation were independent, what would be the
distribution of the number of switches if the experiment
were repeated?

demo6_2.m
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Posterior predictive checking – example

How to choose test quantity
don’t test properties which match the model parameters,
because they are fitted to the data
test something, which is not (yet) part of the model
different test quantities may produce different results

demo6_3.m
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Calibration of ppp-values

In the special case that the parameters θ are known (or
estimated to a very high precision) or in which the test
statistic T (y) is ancillary (that is, if it depends only on
observed data and if its distribution is independent of the
parameters of the model) with a continuous distribution,
the posterior predictive p-value Pr(T (y rep)>T (y)|y) has a
distribution that is uniform if the model is true.
Under these conditions, p-values less than 0.1 occur 10%
of the time, p-values less than 0.05 occur 5% of the time,
and so forth.
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Marginal and CV predictive checking

Consider marginal predictive distributions p(ỹi |y) and each
observation separately

marginal posterior p-values

pi = Pr(T (y rep
i ) ≤ T (yi)|y)

if T (yi) = yi

pi = Pr(y rep
i ≤ yi |y)

if Pr(ỹi |y) well calibrated, distribution of pi would be
uniform between 0 and 1

holds better for cross-validation predictive tests
(cross-validation Ch 7)

demo6_4.m
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Calibration of marginal predictive checks

For continuous data, cross-validation predictive p-values
have a uniform distribution if the model is calibrated
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Sensitivity analysis

How much different choices in model structure and priors
affect the results

test different models and priors
alternatively combine different models to one model

e.g. hierarchical model instead of separate and pooled
e.g. t distribution contains Gaussian as a special case

robust models are good for testing sensitivity to “outliers”
e.g. t instead of Gaussian

Compare sensitivity of essential inference quantities
extreme quantiles are more sensitive than means and
medians
extrapolation is more sensitive than interpolation
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