
Chapter 4

4.1 Normal approximation (Laplace’s method)
4.2 Large-sample theory
4.3 Counter examples
4.4 Frequency evaluation (not part of the course, but
interesting)
4.5 Other statistical methods (not part of the course, but
interesting)
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Normal approximation (Laplace approximation)

Often posterior converges to normal distribution when
n→∞
If posterior is unimodal and close to symmetric

we can approximate p(θ|y) with normal distribution

p(θ|y) ≈ 1√
2πσθ

exp
(
− 1

2σ2
θ

(θ − θ̂)2
)

ie. log posterior log p(θ|y) can be approximated with a
quadratic function

log p(θ|y) ≈ α(θ − θ̂)2 + C
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Taylor series

Univariate Taylor series expansion around x = a

f (x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+. . .

Multivariate series expansion

f (x) = f (a)+
∂f (x′)
∂x′ x′=a

(x−a)+
1
2!

(x−a)T ∂
2f (x′)
∂x′2 x ′=a

(x−a) . . .
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Normal approximation

Taylor series expansion of the log posterior around the
posterior mode θ̂

log p(θ|y) = log p(θ̂|y)+
1
2

(θ−θ̂)T
[

d2

dθ2 log p(θ|y)

]
θ=θ̂

(θ−θ̂)+. . .

Multivariate normal ∝ |Σ|−1/2 exp
(
−1

2(θ − θ̂T )Σ−1(θ − θ̂)
)

Normal approximation

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)

where I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)
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Normal approximation

I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)

I(θ̂) is the second derivatives at the mode and thus
describes the curvature at the mode
if the mode is inside the parameter space, I(θ̂) is positive
if θ is a vector, then I(θ) is a matrix
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Normal approximation – example

Normal distribution, unknown mean and variance
uniform prior (µ, logσ)
normal approximation for the posterior of (µ, logσ)

log p(µ, logσ|y) = constant− n logσ −
1

2σ2 [(n − 1)s2 + n(ȳ − µ)2]

first derivatives

d
dµ

log p(µ, logσ|y) =
n(ȳ − µ)

σ2 ,

d
d(logσ)

log p(µ, logσ|y) = −n +
(n − 1)s2 + n(ȳ − µ)2

σ2 ,

from which it is easy to compute the mode

(µ̂, log σ̂) =

(
ȳ ,

1
2

log
(

n − 1
n

s2
))
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ȳ − µ
σ2 ,

d2

d(logσ)2 log p(µ, logσ|y) = − 2
σ2 ((n − 1)s2 + n(ȳ − µ)2)
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7 / 23



Normal approximation – example

Normal distribution, unknown mean and variance
first derivatives

d
dµ

log p(µ, logσ|y) =
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7 / 23



Normal approximation – example

Normal distribution, unknown mean and variance
first derivatives

d
dµ

log p(µ, logσ|y) =
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Normal approximation – example

Normal distribution, unknown mean and variance
second derivatives

d2

dµ2 log p(µ, logσ|y) = − n
σ2 ,

d2

dµ(logσ)
log p(µ, logσ|y) = −2n

ȳ − µ
σ2 ,

d2

d(logσ)2 log p(µ, logσ|y) = − 2
σ2 ((n − 1)s2 + n(ȳ − µ)2)

matrix of the second derivatives at (µ̂, log σ̂)(
−n/σ̂2 0

0 −2n

)
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Normal approximation – example

Normal distribution, unknown mean and variance
posterior mode

(µ̂, log σ̂) =

(
ȳ ,

1
2

log
(

n − 1
n

s2
))

matrix of the second derivatives at (µ̂, log σ̂)(
−n/σ̂2 0

0 −2n

)
normal approximation

p(µ, logσ|y) ≈ N

((
µ

logσ

) ∣∣∣∣∣
(

ȳ
log σ̂

)
,

(
σ̂2/n 0

0 1/(2n)

))
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Normal approximation – example

normal approximation can be computed numerically
finite-difference for gradients
minimize the negative log posterior density: minimum is the
mode and Hessian at the minimum is the observed
information at the mode
e.g. Matlab
[w,fval,exitflag,output,g,H]=fminunc(@nlogp,w0,opt,x,y,n);
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Bioassay example

Dose, xi Number of Number of
(log g/ml) animals, ni deaths, yi

-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5

yi |θi ∼ Bin(ni , θi)

Logistic regression logit(θi) = α + βxi

Likelihood

p(yi |α, β,ni , xi) ∝ [logit−1(α + βxi)]yi [1− logit−1(α + βxi)]ni−yi

Posterior

p(α, β|y ,n, x) ∝ p(α, β)
4∏

i=1

p(yi |α, β,ni , xi)

demo4_1
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Large sample theory

Asymptotic normality
as n the number of observations yi increases the posterior
converges to normal distribution
see counter examples
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Large sample theory

Assume "true" underlying data distribution f (y)

observations y1, . . . , yn are independent samples from the
joint distribution f (y)
"true" data distribution f (y) is not always well defined
in the following we proceed as if there were true underlying
data distribution
for the theory the exact form of f (y) is not important as long
at it has certain regularity conditions
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Large sample theory

Consistency
if true distribution is included in the parametric family, so
that f (y) = p(y |θ0) for some θ0, then posterior converges to
a point θ0, when n→∞

if true distribution is not included in the parametric family,
then there is no true θ0

true θ0 is replcaed with θ0 which minises the
Kullback-Leibler divergence from f (y)

H(θ0) =

∫
f (yi ) log

(
f (yi )

p(yi |θ0)

)
dyi
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Large sample theory – counter examples

Does not always hold when n→∞
Under- and non-identifiability

model is under-identifiable, is model has parameters or
parameter combinations for which there is no information in
the data
then there is no single point θ0 where posterior would
converge
e.g. if we never observe u and v at the same time and the
model is (

u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable
problem also for other inference methods like MCMC
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Large sample theory – counter examples

Does not always hold when n→∞
If the number of parameter increases as the number of
observation increases

in some models number of parameters depends on the
number of observations
e.g. spatial models yi ∼ N(θi , σ

2) and θi has spatial prior
posterior of θi does not converge to a point, if additional
observations do not bring enough information
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Large sample theory – counter examples

Does not always hold when n→∞
Aliasing (valetoisto)

special case of under-identifiability where likelihood repeats
in separate points
e.g. mixture of normals

p(yi |µ1, µ2, σ
2
1 , σ

2
2 , λ) = λN(µ1, σ

2
1) + (1− λ) N(µ2, σ

2
2)

if (µ1, µ2) are switched, (σ2
1 , σ

2
2) are switched and replace λ

with (1− λ), model is equivalent; posterior would usually
have two modes which are mirror images of each other and
the posterior does not converge to a single point
usually not a big problem for Monte Carlo methods, but may
make the convergence diagnostics more difficult
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Large sample theory – counter examples

Does not always hold when n→∞
Unbounded (Rajoittamaton) likelihood

if likelihood is unbounded it is possible that there is no
mode in the posterior
e.g. previous normal mixture model; assume λ to be known
(and not 0 or 1); if we set µ1 = yi for any i and σ2

1 → 0, then
likelihood→∞
if prior for σ2

1 does not go to zero when σ2
1 → 0, then the

posterior is unbounded
when n→∞ the number of likelihood modes increases
problem for any inference method (e.g. Monte Carlo)
can be avoided with good priors
note that prior close to a prior allowing unbounded posterior
may produce almost unbounded posterior
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Large sample theory – counter examples

Does not always hold when n→∞
Improper posterior

asymptotic results assume that probability sums to 1
e.g. Binomial model, with Beta(0,0) prior and observation
y = n

posterior p(θ|n, 0) = θn−1(1− θ)−1

when θ → 1, then p(θ|n, 0)→∞
problem for any inference method (e.g. Monte Carlo)
can be avoided with proper priors
note that prior close to a improper prior may produce
almost improper posterior
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Large sample theory – counter examples

Does not always hold when n→∞
Prior distribution does not include the convergence point

if in discrete case p(θ0) = 0 or in continuous case p(θ) = 0
in the neighborhood of θ0, then the convergence results
based on the dominance of the likelihood do not hold

not a problem for Monte Carlo methods (but may still be
undesired)
should have a positive prior probability/density where
needed
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Large sample theory – counter examples

Does not always hold when n→∞
Convergence point at the edge of the parameter space

if θ0 is on the edge of the parameter space, Taylor series
expansion has to be truncated, and normal approximation
does not necessarily hold
e.g. yi ∼ N(θ,1) with a restriction θ ≥ 0 and assume that
θ0 = 0
posterior of θ is left truncated normal distribution with µ = ȳ
in the limit n→∞ posterior is half normal distribution

not a problem for Monte Carlo
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Large sample theory – counter examples

Tails of the distribution
normal approximation may be accurate for the most of the
posterior mass, but still be inaccurate for the tails
e.g. parameter which is constrained to be positive; given a
finite n, normal approximation assumes non-zero
probability for negative values

Monte Carlo has different kind of problems with the tails
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Other distributional approximations

Many other distributional approximations exist and it’s a hot
research topic in probabilistic machine learning

benefit is speed
challenge is accuracy and algorithmic robustnes

Chapter 13 includes
more about mode finding
more about Laplace approximation
variational inference
expectation propagation
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