Chapter 4

@ 4.1 Normal approximation (Laplace’s method)
@ 4.2 Large-sample theory
@ 4.3 Counter examples

@ 4.4 Frequency evaluation (not part of the course, but
interesting)

@ 4.5 Other statistical methods (not part of the course, but
interesting)



Normal approximation (Laplace approximation)

@ Often posterior converges to normal distribution when
n— oo
@ If posterior is unimodal and close to symmetric
e we can approximate p(6|y) with normal distribution
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Normal approximation (Laplace approximation)

@ Often posterior converges to normal distribution when
n— oo

@ If posterior is unimodal and close to symmetric
e we can approximate p(6|y) with normal distribution

1 1 A
p(bly) ~ Voron exp (—M(e - 9)2>
0 0

e ie. log posterior log p(6]y) can be approximated with a
quadratic function

log p(6]y) ~ a(6 — 6)? + C



Taylor series

@ Univariate Taylor series expansion around x = a

f(3)( a)
3!

f(x) = f(a)+f'(a)(x—a)+ f'(a) (x—a)®+

o (x—a)®+...



Taylor series

@ Univariate Taylor series expansion around x = a

f(x) = (@) +F(a)(x—a)+ 2(,"”) (x—a)+! (3;53) (x—a)*+...
@ Multivariate series expansion
! 2 /
f(x) = f(a)+agxx, )x/_a(x—a)+21!(x—a)Ta a’;f,’z‘ )X,_a( _a).



Normal approximation

@ Taylor series expansion of the log posterior around the
posterior mode ¢

1 d? 5
06 p(611) =106 p01Y) + 5(6-)" | 52 100p(0I)| (9=}

@ Multivariate normal o |=|~"/2 exp( 100z (6 - 63))
@ Normal approximation
p(8ly) =~ N(@. 1101

where /(0) is called observed information

d2
1(0) = BPTH log p(0]y)



Normal approximation

@ /(0) is called observed information

2

I(0) = — &5 Tog p(0ly)

o I(f) is the second derivatives at the mode and thus
describes the curvature at the mode A

e if the mode is inside the parameter space, /(0) is positive

e if A is a vector, then /(6) is a matrix



Normal approximation — example

@ Normal distribution, unknown mean and variance
e uniform prior (u,log o)
e normal approximation for the posterior of (1, log o)

log p(p,logoly) = constant — nlogo —
32 (n= 1) + n(y — p)?]
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Normal approximation — example

@ Normal distribution, unknown mean and variance
e uniform prior (u,log o)
e normal approximation for the posterior of (1, log o)

log p(p,logoly) = constant — nlogo —
32 (n= 1) + n(y — p)?]

first derivatives

d n(y —
4, 09P(logaly) = (yaz’”)
o N ) R (s
d(log o) log p(,logoly) = —n+ o2 ;

from which it is easy to compute the mode

. o (=1 n—-1,
(f1,logé) = (y,zlog (ns >)



Normal approximation — example

@ Normal distribution, unknown mean and variance
first derivatives

d |
o logp(p,logoly) = 5
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Normal approximation — example

@ Normal distribution, unknown mean and variance
first derivatives

d n(y —
4, '09p(plogaly) = M
1 o
d (=) — )
Wlo&o(ﬂ"og oly) = —-n+ -2

second derivatives
d2
a2 logp(p,logoly) = ——



Normal approximation — example

@ Normal distribution, unknown mean and variance
first derivatives

d n(y —
4, '09p(u;logaly) = 42 > m?
w o
d L (=D -
d(log ) logp(p,logoly) = —n+ -2

second derivatives
2

A (wlogoly) = ——
duz gp ,LL, gO'y - 0_27
2 —
y—n
_— = —2
dnd(iogo) log p(4,log o|y) s



Normal approximation — example

@ Normal distribution, unknown mean and variance
first derivatives

d nly —
9 jogp(u.logaly) = 1)
du o
d _ (n— 1)+ n(y — p)?
Wlo&o(ﬂ"og oly) = —n+ -2
second derivatives
d72|o ( |o ’ ) — _ﬂ
duz gp ,LL, gO'y - 0_27
2 -
P ey !
d,u,d(loga) Iogp(//L?IOgO-’y) - 2n 0_2 ’
P ogpiulogaly) = —2((n- 1)+ n(7 - u)



Normal approximation — example

@ Normal distribution, unknown mean and variance
second derivatives

2

dilo ( |0 | ) — _£

a2 gp(u,logaly) = ——3,

2 -

y—u

- - _92
dp(iog o) log p(p, log oly) n"—s

2 2
- [ - _ = 1 2 v 2
d(log o )2 log p(1,log oly) Uz((ﬂ )s° +n(y — u)°)

matrix of the second derivatives at (ji,log &)

(5" 2n)



Normal approximation — example

@ Normal distribution, unknown mean and variance
posterior mode

. a1 n-1,
(f1,log5) = (y,2I09 (ns ))

matrix of the second derivatives at (i, log &)

S

normal approximation
N 7 y 8%/n 0
pu,logaly) =N ((Iog a> (Iog a) ’ < 0 1/(2n)>>




Normal approximation — example

@ normal approximation can be computed numerically
o finite-difference for gradients

e minimize the negative log posterior density: minimum is the
mode and Hessian at the minimum is the observed
information at the mode

e e.g. Matlab

[w,fval,exitflag,output,g,H]=fminunc(@nlogp,w0,0pt,x,y,n);
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Bioassay example

(B9l Numberof - Numper of

. B

o y,"@,' ~ Bin(n,-, 9,)
@ Logistic regression logit(0;) = o + (x;
@ Likelihood
p(yila, 8, i, x;) o [logit™" (a + 5x)[1 — logit ™" (a + 5x;)]"

@ Posterior

4
p(Oé,,BU/, n, X) (S8 p(a’ﬁ)Hp(yi|a7ﬂa niaxi)
i=1

@ demo4 1
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Large sample theory

@ Asymptotic normality

e as nthe number of observations y; increases the posterior
converges to normal distribution
@ see counter examples

12/23



Large sample theory

@ Assume "true" underlying data distribution f(y)

e observations yy, ..., ¥, are independent samples from the
joint distribution f(y)

e "true" data distribution f(y) is not always well defined

e in the following we proceed as if there were true underlying
data distribution

e for the theory the exact form of f(y) is not important as long
at it has certain regularity conditions
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Large sample theory

@ Consistency

e if true distribution is included in the parametric family, so
that f(y) = p(y|6o) for some 6y, then posterior converges to
a point 69, when n — oo
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Large sample theory

@ Consistency
e if true distribution is included in the parametric family, so
that f(y) = p(y|6o) for some 6y, then posterior converges to
a point 69, when n — oo
@ if true distribution is not included in the parametric family,
then there is no true 6,
e true 6 is replcaed with 6y which minises the
Kullback-Leibler divergence from f(y)

Hioo) = [ Hnytog (200 ) o
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Large sample theory — counter examples

@ Does not always hold when n — oo

@ Under- and non-identifiability
e model is under-identifiable, is model has parameters or
parameter combinations for which there is no information in
the data
e then there is no single point 6, where posterior would
converge
e e.g. if we never observe u and v at the same time and the

@)

then correlation p is non-identifiable
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ Under- and non-identifiability
e model is under-identifiable, is model has parameters or
parameter combinations for which there is no information in
the data
e then there is no single point 6, where posterior would
converge
e e.g. if we never observe u and v at the same time and the

@ en(©)9)

then correlation p is non-identifiable

@ e.g. uand v could be length and weight of a student; if only
one of them is measured for each student, then p is
non-identifiable

e problem also for other inference methods like MCMC
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ If the number of parameter increases as the number of
observation increases
@ in some models number of parameters depends on the
number of observations
e e.g. spatial models y; ~ N(6;,02) and 6; has spatial prior
e posterior of §; does not converge to a point, if additional
observations do not bring enough information
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ Aliasing (valetoisto)
e special case of under-identifiability where likelihood repeats

in separate points
e e.g. mixture of normals

p(yili, p2, 05,05, X) = AN(u1,0F) + (1 = A) N(pz, 03)

if (u1, o) are switched, (0%, 03) are switched and replace A
with (1 — \), model is equivalent; posterior would usually
have two modes which are mirror images of each other and
the posterior does not converge to a single point

@ usually not a big problem for Monte Carlo methods, but may
make the convergence diagnostics more difficult
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ Unbounded (Rajoittamaton) likelihood
e if likelihood is unbounded it is possible that there is no
mode in the posterior
@ e.g. previous normal mixture model; assume A to be known
(and not 0 or 1); if we set 1 = y; for any i and o5 — 0, then
likelihood — oo
e if prior for o2 does not go to zero when o2 — 0, then the
posterior is unbounded
when n — oo the number of likelihood modes increases
problem for any inference method (e.g. Monte Carlo)
can be avoided with good priors
note that prior close to a prior allowing unbounded posterior
may produce almost unbounded posterior
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Large sample theory — counter examples

@ Does not always hold when n —
@ Improper posterior
e asymptotic results assume that probability sums to 1
e e.g. Binomial model, with Beta(0, 0) prior and observation
y=n
@ posterior p(d|n,0) = 6"~"(1 — )"
@ when 6 — 1, then p(6|n,0) — oo
e problem for any inference method (e.g. Monte Carlo)
@ can be avoided with proper priors
e note that prior close to a improper prior may produce
almost improper posterior
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ Prior distribution does not include the convergence point

e if in discrete case p(6p) = 0 or in continuous case p(8) = 0
in the neighborhood of 6y, then the convergence results
based on the dominance of the likelihood do not hold
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Large sample theory — counter examples

@ Does not always hold when n — oo
@ Prior distribution does not include the convergence point
e if in discrete case p(6p) = 0 or in continuous case p(8) = 0
in the neighborhood of 6y, then the convergence results
based on the dominance of the likelihood do not hold
e not a problem for Monte Carlo methods (but may still be
undesired)
e should have a positive prior probability/density where
needed
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Large sample theory — counter examples

@ Does not always hold when n —

@ Convergence point at the edge of the parameter space

e if Ay is on the edge of the parameter space, Taylor series
expansion has to be truncated, and normal approximation
does not necessarily hold

e e.g. yi ~ N(6,1) with a restriction § > 0 and assume that
6o=0

e posterior of 4 is left truncated normal distribution with . =y

e in the limit n — oo posterior is half normal distribution
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Large sample theory — counter examples

@ Tails of the distribution
e normal approximation may be accurate for the most of the
posterior mass, but still be inaccurate for the tails
e e.g. parameter which is constrained to be positive; given a
finite n, normal approximation assumes non-zero
probability for negative values

@ Monte Carlo has different kind of problems with the tails
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Other distributional approximations

@ Many other distributional approximations exist and it’s a hot
research topic in probabilistic machine learning
e benefit is speed
e challenge is accuracy and algorithmic robustnes

@ Chapter 13 includes

more about mode finding

more about Laplace approximation
variational inference

expectation propagation
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