Chapter 4

- 4.1 Normal approximation (Laplace's method)
- 4.2 Large-sample theory
- 4.3 Counter examples
- 4.4 Frequency evaluation (not part of the course, but interesting)
- 4.5 Other statistical methods (not part of the course, but interesting)

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) \approx \frac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp\left(-\frac{1}{2\sigma_{\theta}^2}(\theta-\hat{\theta})^2\right)$$

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp\left(-rac{1}{2\sigma_{\theta}^2}(\theta-\hat{\theta})^2
ight)$$

• ie. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

Taylor series

• Univariate Taylor series expansion around x = a

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

Taylor series

• Univariate Taylor series expansion around x = a

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

Multivariate series expansion

$$f(\mathbf{x}) = f(\mathbf{a}) + \frac{\partial f(\mathbf{x}')}{\partial \mathbf{x}'}_{\mathbf{x}'=\mathbf{a}} (\mathbf{x} - \mathbf{a}) + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^T \frac{\partial^2 f(\mathbf{x}')}{\partial \mathbf{x}'^2}_{x'=\mathbf{a}} (\mathbf{x} - \mathbf{a}) \dots$$

Normal approximation

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta|y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

- Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$
- Normal approximation

$$p(\theta|y) \approx N(\hat{\theta}, [I(\hat{\theta})]^{-1})$$

where $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

Normal approximation

• $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

- $I(\hat{\theta})$ is the second derivatives at the mode and thus describes the curvature at the mode
- if the mode is inside the parameter space, $I(\hat{\theta})$ is positive
- if θ is a vector, then $I(\theta)$ is a matrix

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2},$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\begin{split} \frac{d}{d\mu}\log p(\mu,\log\sigma|y) &=& \frac{n(\bar{y}-\mu)}{\sigma^2}, \\ \frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) &=& -n+\frac{(n-1)s^2+n(\bar{y}-\mu)^2}{\sigma^2}, \end{split}$$

from which it is easy to compute the mode

$$(\hat{\mu}, \log \hat{\sigma}) = \left(\bar{y}, \frac{1}{2} \log \left(\frac{n-1}{n} s^2\right)\right)$$

Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

 Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\frac{d^2}{d\mu^2}\log p(\mu,\log \sigma|y) = -\frac{n}{\sigma^2},$$

Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\frac{d^2}{d\mu^2}\log p(\mu,\log \sigma|y) = -\frac{n}{\sigma^2},$$

$$\frac{d^2}{d\mu d(\log \sigma)}\log p(\mu,\log \sigma|y) = -2n\frac{\bar{y}-\mu}{\sigma^2},$$

 Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log \sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log \sigma)}\log p(\mu,\log \sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\begin{split} \frac{d^2}{d\mu^2}\log p(\mu,\log\sigma|y) &= -\frac{n}{\sigma^2}, \\ \frac{d^2}{d\mu d(\log\sigma)}\log p(\mu,\log\sigma|y) &= -2n\frac{\bar{y}-\mu}{\sigma^2}, \\ \frac{d^2}{d(\log\sigma)^2}\log p(\mu,\log\sigma|y) &= -\frac{2}{\sigma^2}((n-1)s^2+n(\bar{y}-\mu)^2) \end{split}$$

 Normal distribution, unknown mean and variance second derivatives

$$\frac{d^2}{d\mu^2} \log p(\mu, \log \sigma | y) = -\frac{n}{\sigma^2},$$

$$\frac{d^2}{d\mu(\log \sigma)} \log p(\mu, \log \sigma | y) = -2n\frac{\bar{y} - \mu}{\sigma^2},$$

$$\frac{d^2}{d(\log \sigma)^2} \log p(\mu, \log \sigma | y) = -\frac{2}{\sigma^2}((n-1)s^2 + n(\bar{y} - \mu)^2)$$

matrix of the second derivatives at $(\hat{\mu}, \log \hat{\sigma})$

$$\begin{pmatrix} -n/\hat{\sigma}^2 & 0 \\ 0 & -2n \end{pmatrix}$$

Normal distribution, unknown mean and variance posterior mode

$$(\hat{\mu}, \log \hat{\sigma}) = \left(\bar{y}, \frac{1}{2} \log \left(\frac{n-1}{n} s^2\right)\right)$$

matrix of the second derivatives at $(\hat{\mu}, \log \hat{\sigma})$

$$\begin{pmatrix} -n/\hat{\sigma}^2 & 0 \\ 0 & -2n \end{pmatrix}$$

normal approximation

$$p(\mu, \log \sigma | y) \approx N \left(\begin{pmatrix} \mu \\ \log \sigma \end{pmatrix} \middle| \begin{pmatrix} \bar{y} \\ \log \hat{\sigma} \end{pmatrix}, \begin{pmatrix} \hat{\sigma}^2/n & 0 \\ 0 & 1/(2n) \end{pmatrix} \right)$$

- normal approximation can be computed numerically
 - finite-difference for gradients
 - minimize the negative log posterior density: minimum is the mode and Hessian at the minimum is the observed information at the mode
 - e.g. Matlab [w,fval,exitflag,output,g,H]=fminunc(@nlogp,w0,opt,x,y,n);

Bioassay example

Dose x; (log g/ml)	Number of animals, n_i	Number of deaths, y_i
-8.86 -8.35 0.73	იიიი	935

- $y_i | \theta_i \sim \text{Bin}(n_i, \theta_i)$
- Logistic regression logit(θ_i) = $\alpha + \beta x_i$
- Likelihood

$$p(y_i|\alpha,\beta,n_i,x_i) \propto [\mathsf{logit}^{-1}(\alpha+\beta x_i)]^{y_i}[1-\mathsf{logit}^{-1}(\alpha+\beta x_i)]^{n_i-y_i}$$

• Posterior $p(\alpha,\beta|y,n,x) \propto p(\alpha,\beta) \prod_{i=1}^4 p(y_i|\alpha,\beta,n_i,x_i)$ • demo4 1

- Asymptotic normality
 - as n the number of observations y_i increases the posterior converges to normal distribution
 - see counter examples

- Assume "true" underlying data distribution f(y)
 - observations y_1, \ldots, y_n are independent samples from the joint distribution f(y)
 - "true" data distribution f(y) is not always well defined
 - in the following we proceed as if there were true underlying data distribution
 - for the theory the exact form of f(y) is not important as long at it has certain regularity conditions

Consistency

• if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
- if true distribution is not included in the parametric family, then there is no true θ_0
 - true θ_0 is replicated with θ_0 which minises the Kullback-Leibler divergence from f(y)

$$H(\theta_0) = \int f(y_i) \log \left(\frac{f(y_i)}{p(y_i|\theta_0)} \right) dy_i$$

- Does not always hold when $n \to \infty$
- Under- and non-identifiability
 - model is under-identifiable, is model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

- Does not always hold when $n \to \infty$
- Under- and non-identifiability
 - model is under-identifiable, is model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable

- Does not always hold when $n \to \infty$
- Under- and non-identifiability
 - model is under-identifiable, is model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

- e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable
- problem also for other inference methods like MCMC

- Does not always hold when $n \to \infty$
- If the number of parameter increases as the number of observation increases
 - in some models number of parameters depends on the number of observations
 - e.g. spatial models $y_i \sim N(\theta_i, \sigma^2)$ and θ_i has spatial prior
 - posterior of θ_i does not converge to a point, if additional observations do not bring enough information

- Does not always hold when $n \to \infty$
- Aliasing (valetoisto)
 - special case of under-identifiability where likelihood repeats in separate points
 - e.g. mixture of normals

$$p(y_i|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda) = \lambda N(\mu_1, \sigma_1^2) + (1 - \lambda) N(\mu_2, \sigma_2^2)$$

if (μ_1, μ_2) are switched, (σ_1^2, σ_2^2) are switched and replace λ with $(1 - \lambda)$, model is equivalent; posterior would usually have two modes which are mirror images of each other and the posterior does not converge to a single point

 usually not a big problem for Monte Carlo methods, but may make the convergence diagnostics more difficult

- Does not always hold when $n \to \infty$
- Unbounded (Rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$
 - if prior for σ_1^2 does not go to zero when $\sigma_1^2 \to 0$, then the posterior is unbounded
 - when $n \to \infty$ the number of likelihood modes increases
 - problem for any inference method (e.g. Monte Carlo)
 - can be avoided with good priors
 - note that prior close to a prior allowing unbounded posterior may produce almost unbounded posterior

- Does not always hold when $n \to \infty$
- Improper posterior
 - asymptotic results assume that probability sums to 1
 - e.g. Binomial model, with Beta(0,0) prior and observation
 y = n
 - posterior $p(\theta|n,0) = \theta^{n-1}(1-\theta)^{-1}$
 - when $\theta \to 1$, then $p(\theta|n,0) \to \infty$
 - problem for any inference method (e.g. Monte Carlo)
 - can be avoided with proper priors
 - note that prior close to a improper prior may produce almost improper posterior

- Does not always hold when $n \to \infty$
- Prior distribution does not include the convergence point
 - if in discrete case $p(\theta_0) = 0$ or in continuous case $p(\theta) = 0$ in the neighborhood of θ_0 , then the convergence results based on the dominance of the likelihood do not hold

- Does not always hold when $n \to \infty$
- Prior distribution does not include the convergence point
 - if in discrete case $p(\theta_0) = 0$ or in continuous case $p(\theta) = 0$ in the neighborhood of θ_0 , then the convergence results based on the dominance of the likelihood do not hold
 - not a problem for Monte Carlo methods (but may still be undesired)
 - should have a positive prior probability/density where needed

- Does not always hold when $n \to \infty$
- Convergence point at the edge of the parameter space
 - if θ_0 is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold
 - e.g. $y_i \sim N(\theta, 1)$ with a restriction $\theta \ge 0$ and assume that $\theta_0 = 0$
 - posterior of θ is left truncated normal distribution with $\mu = \bar{y}$
 - in the limit $n \to \infty$ posterior is half normal distribution

- Does not always hold when $n \to \infty$
- Convergence point at the edge of the parameter space
 - if θ_0 is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold
 - e.g. $y_i \sim N(\theta, 1)$ with a restriction $\theta \ge 0$ and assume that $\theta_0 = 0$
 - posterior of θ is left truncated normal distribution with $\mu = \bar{y}$
 - in the limit $n \to \infty$ posterior is half normal distribution
 - not a problem for Monte Carlo

- Tails of the distribution
 - normal approximation may be accurate for the most of the posterior mass, but still be inaccurate for the tails
 - e.g. parameter which is constrained to be positive; given a finite n, normal approximation assumes non-zero probability for negative values
- Monte Carlo has different kind of problems with the tails

Other distributional approximations

- Many other distributional approximations exist and it's a hot research topic in probabilistic machine learning
 - benefit is speed
 - challenge is accuracy and algorithmic robustnes
- Chapter 13 includes
 - more about mode finding
 - more about Laplace approximation
 - variational inference
 - expectation propagation