
Outline of the chapter 2

2.1 Binomial model (e.g. biased coin flipping)
2.2 Posterior as compromise between data and prior
information
2.3 Posterior summaries
2.4 Informative prior distributions (skip exponential families
and sufficient statistics)
2.5 Gaussian model with known variance
2.6 Other single parameter models

the normal distribution with known mean but unknwon
variance is the most important
glance through Poisson and exponential

2.7 glance through this example, which illustrates benefits
of prior information, no need to read all the details (it’s
quite long example)
2.8 Noninformative and weakly informative priors
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Binomial: unknwon θ

Bayes rule

p(θ|y ,n,M) =
p(y |θ,n,M)p(θ|n,M)

p(y |n,M)

Start with uniform prior

p(θ|n,M) = p(θ|M) = 1, kun 0 ≤ θ ≤ 1

Then

p(θ|y ,n,M) =
p(y |θ,n,M)

p(y |n,M)
=

(n
y

)
θy (1− θ)n−y∫ 1

0

(n
y

)
θy (1− θ)n−ydθ

=
1
Z
θy (1− θ)n−y
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Binomial: unknwon θ

Normalization term Z

Z = p(y |n,M) =

∫ 1

0
θy (1−θ)n−ydθ =

Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)

Normalisation term has Beta function form
when integarted over (0,1) the result can presented with
Gamma functions
with integers Γ(n) = (n − 1)!
for large integers even this is challenging and usually
log Γ(·) is computed instead of Γ(·)
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Binomial: unknwon θ

Posterior is

p(θ|y ,n,M) =
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)
θy (1− θ)n−y ,

which is called Beta distribution

θ|y ,n ∼ Beta(y + 1,n − y + 1)

disttool
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Binomial: computation*

Beta CDF not trivial to compute
For example, Matlab uses a continued fraction expression,
and if that does not converge another approximation is
used
Laplace developed normal approximation (Laplace
approximation), because he didn’t know how to compute
Beta CDF
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Justification for uniform prior*

p(θ|M) = 1 if
we want the prior predictive distribution to be uniform

p(y |n) =
1

n + 1
, y = 0, . . . ,n

nice justification as it is based on observables y and n

we think all values of θ are equally likely
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Priors

Conjugate prior (BDA3 p. 35)
Noninformative prior (BDA3 p. 51)
Proper and improper prior (BDA3 p. 52)
Weakly informative prior (BDA3 p. 55)
Informative prior (BDA3 p. 55)
Prior sensitivity (BDA3 p. 38)
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Sufficient statistics

The quantity t(y) is said to be a sufficient statistic for θ,
because the likelihood for θ depends on the data y only
through the value of t(y).
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Effect of integration

Binomial example
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Central limit theorem*

De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov,
et al.
Given certain conditions sum (and mean) of random
variables approach Gaussian distribution as d n→∞
Problems

does not hold for all distributions, e.g., Cauchy
may require large n,
e.g. Binomial, when θ close to 0 or 1
does not hold if one the variables has much larger scale
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Poisson distribution
example

Liikenneturva (Finnish traffic safety organization) reports
about 400 traffic deaths per year
In 2006 Suomen 336 traffic deaths
Was year 2006 exceptional?

p(y2006 ≤ 336|θ = 400) ≈ 10−4

p(y2006 ≤ 336|y1995,...,2005, constant risk) ≈ 4× 10−4
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Poisson distribution
example

Assuming that traffic safety changes slowly
time series model (Gaussian process prior for log risk in
time)
p(y2006 ≤ 336|y1995,...,2005, changing risk) ≈ 0.03

1995 2000 2005

300

350

400

450

 

 

Liikennekuolemat 1995−2005

θ 95%−posteriorivali

Ennustavan jakauman 95%−vali

Liikennekuolemat 2006
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Poisson distribution
example

Add deaths of years 2006 and 2007
In year 2007 377 deaths

In 2008 343 deaths
p(y2008 ≥ 343|y1995,...,2007, changing risk riski) ≈ 0.87

1994 1996 1998 2000 2002 2004 2006 2008

300

350

400

450

 

 

Liikkennekuolemat 1995−2007
θ 95%−posteriorivali

Ennustavan jakauman 95%−vali
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Algae
Exercise

Algae status is monitored in 274 sites at Finnish lakes and
rivers. The observations for the 2008 algae status at each site
are presented in file algae.mat (’0’: no algae, ’1’: algae
present). Let π be the probability of a monitoring site having
detectable blue-green algae levels.

Use a binomial model for observations and a beta(2,10)
prior.
What can you say about the value of the unknown π?
Experiment how the result changes if you change the prior.
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R demonstrations

demo2_1: 437 girls and 543 boys have been observed.
Calculate and plot the posterior distribution of the
proportion of girls θ, using uniform prior on θ.
demo2_2: Comparison of posterior distributions with
different parameter values for the beta prior distribution.
demo2_3: Simulating samples from Beta(438,544),
drawing a histogram with quantiles, and doing the same for
a transformed variable.
demo2_4: Calculating the posterior distribution on a
discrete grid of points (by multiplying the likelihood and a
non-conjugate prior at each point, and normalizing over the
points). Simulating samples from the resulting
non-standard posterior distribution using the inverse-cdf
method.
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