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Today we are going to learn...

@ Bayesian Variable Selection

© Priors for Variable Selection Indicators
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BAYESIAN VARIABLE SELECTION

» Linear regression:

y = Bo+ Bix1+ ... + Bpxp + €.
» Which variables have non-zero coefficient? Example of hypotheses:
Ho : ,502,31:---:,Bp:0
Hi : B1=0
Hy : B1=p2=0

» Introduce variable selection indicators Z = (h, ..., I,).

» Example: Z = (1,1,0) means that B1 # 0 and B2 # 0, but B3 =0,
so x3 drops out of the model.
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BAYESIAN VARIABLE SELECTION, CONT.

» Model inference, just crank the Bayesian machine:
p(Zly, X) & p(y|X,I) - p(T)

» The prior p(Z) is typically taken to be /i, ..., |6 S Bernoulli(0).

» 6 is the prior inclusion probability.
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BAYESIAN VARIABLE SELECTION, CONT.

v

Model inference, just crank the Bayesian machine:
p(Zly, X) & p(y|X,I) - p(T)

The prior p(Z) is typically taken to be f, ..., I,|0 ii(fl Bernoulli(0).
0 is the prior inclusion probability.
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Challenge: Computing the marginal likelihood for each model (7)

p(yIX.7) = [ p(yIX.Z.)p(BIX. T)dp
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BAYESIAN VARIABLE SELECTION, CONT.

> Let Bz denote the non-zero coefficients under Z.

» Prior:
ﬁ1|cr2 ~ N (O, Uzﬂgw
o® ~ Inv — x* (vo, %)
» Marginal likelihood

_q|71/2 —(vo+n—1)/2
p(Y[X,I) o XXz + Qz%‘ Q7,02 (vood + RSS) 0T

where X7 is the covariate matrix for the subset given by 7.

> RSSz is (almost) the residual sum of squares under model implied by 7
RSS; = y'y —y'Xz (XyXz + Qro) ' Xpy
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BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

» But there are 2P model combinations to go through! Ouch!

> ... but most will have essentially zero posterior probability. Phew!
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BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

» But there are 2P model combinations to go through! Ouch!

> ... but most will have essentially zero posterior probability. Phew!
» Simulate from the joint posterior distribution:
p(B. 0% ZlyX) = p(B.o?|Z,y.X)p(Zly, X).

» Simulate from p(Z|y) using Gibbs sampling;:

Draw h|Z_1,y, X
Draw h|Z 5y, X

v vy VY

Draw l,|Z_p,y, X
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BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

» But there are 2P model combinations to go through! Ouch!

> ... but most will have essentially zero posterior probability. Phew!

\{

Simulate from the joint posterior distribution:

p(B. 0% Zly.X) = p(B.o*|Z,y.X)p(Zly, X).

Simulate from p(Z|y) using Gibbs sampling;:

Draw h|Z_1,y, X
Draw h|Z 5y, X

v

v vy VY

Draw l,|Z_p,y, X

v

Only need to compute Pr(l; =0|Z_;,y,X) and Pr(l; = 1|Z_;,y,X).
Automatic model averaging, all in one simulation run.
If needed, simulate from p(B, 02| Z,y,X) for each draw of Z.

v

v
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PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION
0 Initialize Z(0) = (/1(0), 12(0)”” I,SO))
1 Simulate ¢ and B from [Note: v, 0',%,]/!,,, ), all depend on I(O)]
» 02|20y, X ~ Inv — x? (vn, 0?)

n

> Blo2, TO)y, X ~ N [up, 02051
2.1 Simulate h|Z_1,y, X by [define I,S?),p =(1- /1(0)’ 12(0)..., /,EO))]
» compute marginal likelihoods: p(y|X,Z(%?)) and p(y]X,IF(,(,)gp)
> Simulate Il(l) ~ Bernoulli(x) where
p(y|X,2(9) . p(7(9)
p(yIX, Z0)) - p(Z®)) + p(y|X, Z{zlp) - p(Zinop)

2.2 Simulate h|Z_5,y, X as in Step 2.1, but 700 = (Il(l), I2(0), /,§°))

K =

2. Simulate ,|Z_,,y, X as in Step 2.1, but Z(© = (/1Y /M) {0
3 Repeat Steps 1-2 many times.
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SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

» The previous algorithm only works when we can integrate out all the
model parameters to obtain

p(Zly.X) = [ p(p.0% Tly. X)dpde
» MH - propose  and Z jointly from the proposal distribution

q(ﬁplﬁc,Ip)q(Iplfc)

» Main difficulty: how to propose the non-zero elements in 5,7

» Simple approach:

» Approximate posterior with all variables in the model:
approx A 1,5
Bly. X 27 N B4 (B)]
> Propose B, from N B, J;1(B)], conditional on the zero restrictions
implied by Z,. Formulas are available.
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VARIABLE SELECTION IN MORE COMPLEX MODELS

Posterior summary of the one-component split-t model.*

Parameters Mean Stdev Post.Incl.
Location

Const 0.084 0019 =
Scale ¢

Const 0402 0035 -
LastDay ~0.190 0120 0036
LastWeek ~0.738 0193 0985
LastMonth ~0.444 0.086 0.999
CloseAbs95 0194 0233 0035
CloseSqr95 0.107 0226 0023
MaxMin95 1124 0.086 1.000
CloseAbs80 0097 0153 0013
Closesqr80 0143 0143 0021
MaxMin80 ~0022 0200 0017

Degrees of freedom v

Const 2482 0.238 =
LastDay 0.504 0.997 0.112
LastWeek —2.158 0.926 0.638
LastMonth 0.307 0.833 0.089
CloseAbs95 0.718 1.437 0.229
CloseSqr9s 1.350 1.280 0.279
MaxMin95 1.130 1.488 0.222
CloseAbs80 0.035 1.205 0.101
CloseSqr80 0.363 1211 0.112
MaxMin80 -1.672 1172 0.254
Skewness /.

Const -0.104 0.033 -
LastDay —0.159 0.140 0.027
LastWeek -0.341 0.170 0.135
LastMonth -0.076 0.112 0.016
CloseAbs95 -0.021 0.096 0.008
CloseSqr95 —-0.003 0.108 0.006
MaxMin95 0.016 0.075 0.008
CloseAbs80 0.060 0.115 0.009
CloseSqr80 0.059 0.111 0.010
MaxMin80 0.093 0.096 0.013
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MODEL AVERAGING

» Let 7 be a quanitity with an interpretation which stays the same
across the two models.

» Example: Prediction v = (y741, ..., YT+h)

» The marginal posterior distribution of < reads

p(7ly) = p(Mily)p1(7ly) + p(M2ly)p2(7ly).
where py(y|y) is the marginal posterior of 7 conditional on model k.

» Predictive distribution includes three sources of uncertainty:

» Future errors/disturbances (e.g. the €'s in a regression)

» Parameter uncertainty (the predictive distribution has the parameters
integrated out by their posteriors)

> Model uncertainty (by model averaging)
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Variable-selection priors

e The standard modern practice in Bayesian variable-selection problems is to
treat variable inclusions as exchangeable Bernoulli trials with common
success probability p.

e This implies that the prior probability of a model is given by

p(Myfp) =p*(1-p)™ "
with k, representing the number of included variables in the model.

e This indicates that as m grows with the true k remaining fixed, the posterior
distribution of p will concentrate near 0. That means using a fixed p will
yield a null model when m is big (no variable will be selected).

e Selecting p = 1/2 does not provide multiplicity correction. Treating p as an
unknown parameter to be estimated from the data will, however, yield an
automatic multiple-testing penalty.
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Fully Bayesian variable-selection priors

e Assume that p has a Beta distribution, p ~ Beta(a, b), giving

_ Betala+ky,b+m—ky)
p(My) = Beta(a,b)

e For the default choice of a =b =1, implying a uniform prior on p

-1
p(My) = mL—i—l <]Ty)
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