Bayesian variable selection

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics Today we are going to learn...

2 Priors for Variable Selection Indicators

BAYESIAN VARIABLE SELECTION

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon.$$

▶ Which variables have non-zero coefficient? Example of hypotheses:

$$\begin{array}{rcl} H_0 & : & \beta_0 = \beta_1 = \ldots = \beta_p = 0 \\ H_1 & : & \beta_1 = 0 \\ H_2 & : & \beta_1 = \beta_2 = 0 \end{array}$$

- ▶ Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- ► Example: $\mathcal{I} = (1, 1, 0)$ means that $\beta_1 \neq 0$ and $\beta_2 \neq 0$, but $\beta_3 = 0$, so x_3 drops out of the model.

BAYESIAN VARIABLE SELECTION, CONT.

Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\mathcal{I}) \cdot p(\mathcal{I})$$

The prior p(I) is typically taken to be I₁, ..., I_p|θ ∼ Bernoulli(θ).
 θ is the prior inclusion probability.

BAYESIAN VARIABLE SELECTION, CONT.

Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathcal{I}) \cdot p(\mathcal{I})$$

- The prior p(I) is typically taken to be I₁,..., I_p|θ ^{iid} → Bernoulli(θ).
 θ is the prior inclusion probability.
- Challenge: Computing the marginal likelihood for each model (\mathcal{I})

$$p(\mathbf{y}|\mathbf{X}, \mathcal{I}) = \int p(\mathbf{y}|\mathbf{X}, \mathcal{I}, \beta) p(\beta|\mathbf{X}, \mathcal{I}) d\beta$$

BAYESIAN VARIABLE SELECTION, CONT.

Let β_I denote the non-zero coefficients under I.
Prior:

$$\begin{split} \beta_{\mathcal{I}} | \sigma^2 &\sim \textit{N}\left(0, \sigma^2 \Omega_{\mathcal{I},0}^{-1}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right) \end{split}$$

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},0}\right|^{1/2} \left(\nu_0 \sigma_0^2 + RSS_{\mathcal{I}}\right)^{-(\nu_0 + n - 1)/2}$$

where $X_{\mathcal{I}}$ is the covariate matrix for the subset given by \mathcal{I} .

• $RSS_{\mathcal{I}}$ is (almost) the residual sum of squares under model implied by \mathcal{I}

$$\textit{RSS}_{\mathcal{I}} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}_{\mathcal{I}} \left(\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}\right)^{-1} \mathbf{X}_{\mathcal{I}}'\mathbf{y}$$

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- ▶ But there are 2^{*p*} model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- ▶ But there are 2^{*p*} model combinations to go through! Ouch!
- ... but most will have essentially zero posterior probability. Phew!
- **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I} | \mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X}) p(\mathcal{I} | \mathbf{y}, \mathbf{X}).$$

- ► Simulate from *p*(*I*|**y**) using **Gibbs sampling**:
 - Draw $I_1|\mathcal{I}_{-1}, \mathbf{y}, \mathbf{X}$
 - ▶ Draw *I*₂|*I*₋₂,**y**, **X**
 - ► ...
 - Draw $I_p | \mathcal{I}_{-p}, \mathbf{y}, \mathbf{X}$

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- ▶ But there are 2^{*p*} model combinations to go through! Ouch!
- ... but most will have essentially zero posterior probability. Phew!
- **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I} | \mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X}) p(\mathcal{I} | \mathbf{y}, \mathbf{X}).$$

- ► Simulate from *p*(*I*|**y**) using **Gibbs sampling**:
 - Draw $I_1 | \mathcal{I}_{-1}, \mathbf{y}, \mathbf{X}$
 - ▶ Draw *I*₂|*I*₋₂,**y**, **X**
 - <u>۱</u>...
 - Draw $I_p | \mathcal{I}_{-p}, \mathbf{y}, \mathbf{X}$
- ▶ Only need to compute $Pr(I_i = 0 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$ and $Pr(I_i = 1 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$.
- Automatic model averaging, all in one simulation run.
- ▶ If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X})$ for each draw of \mathcal{I} .

PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION

0 Initialize $\mathcal{I}^{(0)} = (I_1^{(0)}, I_2^{(0)}, \dots, I_p^{(0)})$ 1 Simulate σ^2 and β from [Note: $\nu_n, \sigma_n^2, \mu_n, \Omega_n$ all depend on $\mathcal{I}^{(0)}$]

•
$$\sigma^2 | \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim Inv - \chi^2 (v_n, \sigma_n^2)$$

• $\beta | \sigma^2, \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim N [\mu_n, \sigma^2 \Omega_n^{-1}]$

2.1 Simulate $I_1 | \mathcal{I}_{-1}, \mathbf{y}, \mathbf{X}$ by [define $\mathcal{I}_{prop}^{(0)} = (1 - I_1^{(0)}, I_2^{(0)} ..., I_p^{(0)})$]

- ► compute marginal likelihoods: $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)})$ and $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{prop})$
- Simulate $I_1^{(1)} \sim Bernoulli(\kappa)$ where

$$\kappa = \frac{p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot p(\mathcal{I}^{(0)})}{p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot p(\mathcal{I}^{(0)}) + p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{prop}) \cdot p(\mathcal{I}^{(0)}_{prop})}$$

2.2 Simulate $I_2|\mathcal{I}_{-2}, \mathbf{y}, \mathbf{X}$ as in Step 2.1, but $\mathcal{I}^{(0)} = (I_1^{(1)}, I_2^{(0)}, ..., I_p^{(0)})$

2.P Simulate $I_p | \mathcal{I}_{-p}$, y, X as in Step 2.1, but $\mathcal{I}^{(0)} = (I_1^{(1)}, I_2^{(1)}, ..., I_p^{(0)})$ 3 Repeat Steps 1-2 many times.

SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

The previous algorithm only works when we can integrate out all the model parameters to obtain

$$p(\mathcal{I}|\mathbf{y},\mathbf{X}) = \int p(\beta,\sigma^2,\mathcal{I}|\mathbf{y},\mathbf{X})d\beta d\sigma$$

▶ MH - propose β and \mathcal{I} jointly from the proposal distribution

$$q(\beta_p|\beta_c, \mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - Approximate posterior with all variables in the model: $\beta|\mathbf{y}, \mathbf{X} \stackrel{approx}{\sim} N\left[\hat{\beta}, J_{\mathbf{y}}^{-1}(\hat{\beta})\right]$
 - ► Propose β_p from $N[\hat{\beta}, J_y^{-1}(\hat{\beta})]$, conditional on the zero restrictions implied by \mathcal{I}_p . Formulas are available.

VARIABLE SELECTION IN MORE COMPLEX MODELS

----- -

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.
Location u			
Const	0.084	0.019	-
Scale ϕ			
Const	0.402	0.035	-
LastDay	-0.190	0.120	0.036
LastWeek	-0.738	0.193	0.985
LastMonth	-0.444	0.086	0.999
CloseAbs95	0.194	0.233	0.035
CloseSqr95	0.107	0.226	0.023
MaxMin95	1.124	0.086	1.000
CloseAbs80	0.097	0.153	0.013
CloseSqr80	0.143	0.143	0.021
MaxMin80	-0.022	0.200	0.017
Degrees of freedom v			
Const	2.482	0.238	-
LastDay	0.504	0.997	0.112
LastWeek	-2.158	0.926	0.638
LastMonth	0.307	0.833	0.089
CloseAbs95	0.718	1.437	0.229
CloseSqr95	1.350	1.280	0.279
MaxMin95	1.130	1.488	0.222
CloseAbs80	0.035	1.205	0.101
CloseSqr80	0.363	1.211	0.112
MaxMin80	- 1.672	1.172	0.254
Skewness λ			
Const	-0.104	0.033	-
LastDay	-0.159	0.140	0.027
LastWeek	-0.341	0.170	0.135
LastMonth	-0.076	0.112	0.016
CloseAbs95	-0.021	0.096	0.008
CloseSqr95	-0.003	0.108	0.006
MaxMin95	0.016	0.075	0.008
CloseAbs80	0.060	0.115	0.009
CloseSqr80	0.059	0.111	0.010
MaxMin80	0.093	0.096	0.013

MODEL AVERAGING

- Let γ be a quanitity with an interpretation which stays the same across the two models.
- Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- The marginal posterior distribution of γ reads

 $p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$

where $p_k(\gamma | \mathbf{y})$ is the marginal posterior of γ conditional on model k.

- Predictive distribution includes three sources of uncertainty:
 - **Future errors**/disturbances (e.g. the ε 's in a regression)
 - Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)

Variable-selection priors

- The standard modern practice in Bayesian variable-selection problems is to treat variable inclusions as exchangeable Bernoulli trials with common success probability p.
- This implies that the prior probability of a model is given by

$$p(\mathcal{M}_{\gamma}|\mathbf{p}) = p^{k_{\gamma}}(1-p)^{m-k_{\gamma}}$$

with k_{γ} representing the number of included variables in the model.

- This indicates that as m grows with the true k remaining fixed, the posterior distribution of p will concentrate near 0. That means **using a fixed** p **will yield a null model when** m **is big** (no variable will be selected).
- Selecting p = 1/2 does not provide multiplicity correction. Treating p as an unknown parameter to be estimated from the data will, however, yield an automatic multiple-testing penalty.

Fully Bayesian variable-selection priors

• Assume that p has a Beta distribution, $p \sim Beta(a, b)$, giving

$$p(M_{\gamma}) = \frac{\text{Beta}(a + k_{\gamma}, b + m - k_{\gamma})}{\text{Beta}(a, b)}$$

• For the default choice of a = b = 1, implying a uniform prior on p

$$p(M_{\gamma}) = \frac{1}{m+1} \binom{m}{k_{\gamma}}^{-1}$$