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Today we are going to learn...

1 Bayesian Variable Selection

2 Priors for Variable Selection Indicators
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BAYESIAN VARIABLE SELECTION

I Linear regression:

y = β0 + β1x1 + ...+ βpxp + ε.

I Which variables have non-zero coefficient? Example of hypotheses:

H0 : β0 = β1 = ... = βp = 0
H1 : β1 = 0
H2 : β1 = β2 = 0

I Introduce variable selection indicators I = (I1, ..., Ip).

I Example: I = (1, 1, 0) means that β1 6= 0 and β2 6= 0, but β3 = 0,
so x3 drops out of the model.
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BAYESIAN VARIABLE SELECTION, CONT.

I Model inference, just crank the Bayesian machine:

p(I|y,X) ∝ p(y|X, I) · p(I)

I The prior p(I) is typically taken to be I1, ..., Ip |θ
iid∼ Bernoulli(θ).

I θ is the prior inclusion probability.

I Challenge: Computing the marginal likelihood for each model (I)

p(y|X, I) =
∫

p(y|X, I , β)p(β|X, I)dβ
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BAYESIAN VARIABLE SELECTION, CONT.
I Let βI denote the non-zero coefficients under I .
I Prior:

βI |σ2 ∼ N
(
0, σ2Ω−1

I,0

)
σ2 ∼ Inv − χ2 (ν0, σ2

0
)

I Marginal likelihood

p(y|X, I) ∝
∣∣∣X′IXI + Ω−1

I,0

∣∣∣−1/2
|ΩI,0|1/2 (ν0σ2

0 + RSSI
)−(ν0+n−1)/2

where XI is the covariate matrix for the subset given by I .
I RSSI is (almost) the residual sum of squares under model implied by I

RSSI = y′y− y′XI
(
X′IXI + ΩI,0

)−1 X′Iy
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BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

I But there are 2p model combinations to go through! Ouch!
I ... but most will have essentially zero posterior probability. Phew!

I Simulate from the joint posterior distribution:

p(β, σ2, I|y,X) = p(β, σ2|I , y,X)p(I|y,X).

I Simulate from p(I|y) using Gibbs sampling:
I Draw I1|I−1, y,X
I Draw I2|I−2,y,X
I ...
I Draw Ip |I−p, y,X

I Only need to compute Pr(Ii = 0|I−i , y,X) and Pr(Ii = 1|I−i , y,X).
I Automatic model averaging, all in one simulation run.
I If needed, simulate from p(β, σ2|I , y,X) for each draw of I .
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PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION

0 Initialize I (0) = (I
(0)
1 , I

(0)
2 ..., I

(0)
p )

1 Simulate σ2 and β from [Note: νn, σ2
n ,µn,Ωn all depend on I (0)]

I σ2|I (0), y,X ∼ Inv − χ2 (νn, σ2
n

)
I β|σ2, I (0), y,X ∼ N

[
µn, σ2Ω−1

n

]
2.1 Simulate I1|I−1, y,X by [define I (0)prop = (1− I

(0)
1 , I

(0)
2 ..., I

(0)
p )]

I compute marginal likelihoods: p(y|X, I (0)) and p(y|X, I (0)prop)

I Simulate I
(1)
1 ∼ Bernoulli(κ) where

κ =
p(y|X, I (0)) · p(I (0))

p(y|X, I (0)) · p(I (0)) + p(y|X, I (0)prop) · p(I (0)prop)

2.2 Simulate I2|I−2, y,X as in Step 2.1, but I (0) = (I
(1)
1 , I

(0)
2 , ..., I

(0)
p )

...
2.P Simulate Ip |I−p, y,X as in Step 2.1, but I (0) = (I

(1)
1 , I

(1)
2 , ..., I

(0)
p )

3 Repeat Steps 1-2 many times.
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SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

I The previous algorithm only works when we can integrate out all the
model parameters to obtain

p(I|y,X) =
∫

p(β, σ2, I|y,X)dβdσ

I MH - propose β and I jointly from the proposal distribution

q(βp |βc , Ip)q(Ip |Ic)

I Main difficulty: how to propose the non-zero elements in βp?
I Simple approach:

I Approximate posterior with all variables in the model:
β|y,X approx∼ N

[
β̂, J−1

y (β̂)
]

I Propose βp from N
[
β̂, J−1

y (β̂)
]
, conditional on the zero restrictions

implied by Ip . Formulas are available.
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VARIABLE SELECTION IN MORE COMPLEX MODELS

when K=5. Also, the MCMC algorithm struggles when we use KZ4 separate components in the split-t model, with lower
acceptable probabilities and higher risk of getting stuck in a local mode. Moreover, the split-t model with separate
components has one dominant component which is very similar to the one-component model, except for the five-
component model which seems to pick up a more complicated structure. We will describe the estimation results for the
one-component model in detail below.

Our way to assess the quality of the predictive densities in an absolute sense is to investigate the normalized residuals
from the model. A normalized residual is defined as F�1

½FðytÞ�, where Fð�Þ is the cumulative predictive distribution, where
the parameter have been integrated out with respect to the posterior distribution based on the estimation sample, so the
residuals in Fig. 3 are therefore out-of-sample. If the model is correct, the normalized residuals should be iid N(0,1), see e.g.
Berkowitz (2001). It is clear from Fig. 3 that even the SMR with largest LPDS produces much to large residuals during the
most volatile period, and so does the GARCH(1,1) and t-GARCH(1, 1). As indicated in the graph, 19.5% of the normalized
residuals from the SMR(4) lie outside a 95% probability interval according to the N(0,1) reference distribution. The
SAGM(1) does better than the SMR, but this model also generates to many outliers: 3.5% of the residuals are outside the
99% reference interval. The remaining four models in Fig. 3 have rather similar seemingly homoscedastic and independent
residuals, and they all have close to the right coverage. The one-component split-t model is doing remarkably well during
this very difficult time period.

We now take a more detailed look at the inferences from the one-component split-t model. Table 4 presents summaries
of the posterior distribution. The results from the variable selection among the covariates in the scale parameter is very
similar to the results for the variance function in Villani et al. (2009): the covariates MaxMin95, LastWeek and LastMonth

have a posterior inclusion probability close to one, and all other covariates are essentially excluded. There is support for

Table 4
Posterior summary of the one-component split-t model.a

Parameters Mean Stdev Post.Incl. IF

Location m
Const 0.084 0.019 – 9.919

Scale f
Const 0.402 0.035 – 7.125

LastDay �0.190 0.120 0.036 0.903

LastWeek �0.738 0.193 0.985 18.519
LastMonth �0.444 0.086 0.999 4.133
CloseAbs95 0.194 0.233 0.035 1.445

CloseSqr95 0.107 0.226 0.023 2.715

MaxMin95 1.124 0.086 1.000 6.012
CloseAbs80 0.097 0.153 0.013 –

CloseSqr80 0.143 0.143 0.021 –

MaxMin80 �0.022 0.200 0.017 –

Degrees of freedom n
Const 2.482 0.238 – 5.708

LastDay 0.504 0.997 0.112 2.899

LastWeek �2.158 0.926 0.638 5.463
LastMonth 0.307 0.833 0.089 5.560

CloseAbs95 0.718 1.437 0.229 3.020

CloseSqr95 1.350 1.280 0.279 2.758

MaxMin95 1.130 1.488 0.222 6.564

CloseAbs80 0.035 1.205 0.101 2.789

CloseSqr80 0.363 1.211 0.112 3.330

MaxMin80 �1.672 1.172 0.254 4.178

Skewness l
Const �0.104 0.033 – 10.423

LastDay �0.159 0.140 0.027 1.170

LastWeek �0.341 0.170 0.135 8.909

LastMonth �0.076 0.112 0.016 –

CloseAbs95 �0.021 0.096 0.008 –

CloseSqr95 �0.003 0.108 0.006 –

MaxMin95 0.016 0.075 0.008 –

CloseAbs80 0.060 0.115 0.009 –

CloseSqr80 0.059 0.111 0.010 –

MaxMin80 0.093 0.096 0.013 –

F. Li et al. / Journal of Statistical Planning and Inference 140 (2010) 3638–36543650

13 / 14



MODEL AVERAGING

I Let γ be a quanitity with an interpretation which stays the same
across the two models.

I Example: Prediction γ = (yT+1, ..., yT+h)’.

I The marginal posterior distribution of γ reads

p(γ|y) = p(M1|y)p1(γ|y) + p(M2|y)p2(γ|y),

where pk(γ|y) is the marginal posterior of γ conditional on model k .

I Predictive distribution includes three sources of uncertainty:
I Future errors/disturbances (e.g. the ε’s in a regression)
I Parameter uncertainty (the predictive distribution has the parameters

integrated out by their posteriors)
I Model uncertainty (by model averaging)
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Variable-selection priors

• The standard modern practice in Bayesian variable-selection problems is to
treat variable inclusions as exchangeable Bernoulli trials with common
success probability p.

• This implies that the prior probability of a model is given by

p(Mγ|p) = pkγ(1´ p)m´kγ

with kγ representing the number of included variables in the model.
• This indicates that as m grows with the true k remaining fixed, the posterior

distribution of p will concentrate near 0. That means using a fixed p will
yield a null model when m is big (no variable will be selected).

• Selecting p = 1/2 does not provide multiplicity correction. Treating p as an
unknown parameter to be estimated from the data will, however, yield an
automatic multiple-testing penalty.
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Fully Bayesian variable-selection priors

• Assume that p has a Beta distribution, p „ Beta(a,b), giving

p(Mγ) =
Beta(a+ kγ,b+m´ kγ)

Beta(a,b)
• For the default choice of a = b = 1, implying a uniform prior on p

p(Mγ) =
1

m+ 1

(
m

kγ

)´1
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