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The Metropolis-Hastings algorithm is a 

general term for a family of Markov chain 

simulation methods that are useful for 

sampling from Bayesian posterior distributions.  



The Metropolis algorithm 
This algorithm proceeds as follows. 

1. Draw a starting point 𝜃0, for which p(𝜃0|y) > 0, from a starting 
distribution 𝑃0 (θ). 

2. For t = 1, 2, . . . : 
(a) Sample a proposal 𝜃∗ from a jumping distribution  at time t , 𝐽𝑡(𝜃∗ |𝜃𝑡−1) . 

The jumping distribution must be symmetric, satisfying the condition  

𝐽𝑡(𝜃𝑎|𝜃𝑏) = 𝐽𝑡(𝜃𝑏|𝜃𝑎)  for all 𝜃𝑎, 𝜃𝑏, and t . 

𝜃𝑡= 

(b) Calculate 

𝜃∗           with probability min(r, 1) 
𝜃𝑡−1      otherwise. 

(c) Set 

r = p(𝜃∗|y) p(𝜃𝑡−1|y)  



Given the current value 𝜃𝑡, the transition distribution 𝑇𝑡  (𝜃𝑡 |𝜃𝑡−1) 

of the Markov chain is thus a mixture of a point mass at 𝜃𝑡  = 𝜃𝑡−1, and 

a weighted version of the jumping distribution adjusts for the 

acceptance rate .  

The algorithm requires the ability to calculate the ratio r for all (θ, 

𝜃∗), and to draw θ from the jumping distribution 𝐽𝑡  (𝜃
∗ |θ) for all θ and t. 

In addition, step (c) requires the generation of a uniform random 

number. 

When 𝜃𝑡  = 𝜃𝑡−1 ，this still counts as an iteration in the algorithm. 

The Metropolis algorithm 



The Metropolis algorithm 

Why does the Metropolis algorithm work? 

The proof that the sequence of iterations 𝜃1, 𝜃2, . . . converges 

to the target distribution has two steps: first, it is shown that the 

simulated sequence is a Markov chain with a unique stationary 

distribution, and second, it is shown that the stationary 

distribution equals this target distribution.  



The Metropolis algorithm 
Why does the Metropolis algorithm work? 

Now consider any two such points 𝜃𝑎  and 𝜃𝑏  , drawn 

from p(𝜃|y)  and labeled so that p(𝜃𝑏|y) ≥ p(𝜃𝑎|y). The 

unconditional probability density of a transition from 

𝜃𝑎  to 𝜃𝑏  is 

 p(𝜃𝑡−1 =𝜃𝑎, 𝜃𝑡 = 𝜃𝑏) = p(𝜃𝑎|y ) Jt(𝜃𝑏|𝜃𝑎),  



The Metropolis algorithm 
Why does the Metropolis algorithm work? 

The unconditional probability density of a transition from 𝜃𝑏 
to 𝜃𝑎 is: 

which is the same as the probability of a transition from 𝜃𝑎 to 

𝜃𝑏. Since their joint distribution is symmetric, θt and θt−1 have 

the same marginal distributions, and so p(θ|y) is the stationary 

distribution of the Markov chain of θ. 

p(𝜃𝑡−1 = 𝜃𝑏, 𝜃𝑡 = 𝜃𝑎)  

= p(𝜃𝑏|y ) Jt(𝜃𝑎|𝜃𝑏)[p(𝜃𝑎|y) p(𝜃𝑏|y )]   

= p(𝜃𝑎|y ) 𝐽𝑡(𝜃𝑎|𝜃𝑏) 



 

The Metropolis-Hastings algorithm 
generalizes the basic Metropolis 
algorithm presented above in two 
ways. 

The Metropolis-Hastings algorithm 



 

 

First, the jumping rules Jt need no 
longer be symmetric; 

 

 

The Metropolis-Hastings algorithm 



Second, to correct for the asymmetry 
in the jumping rule, the ratio r in (11.1) 
is replaced by a ratio of ratios: 

 

The Metropolis-Hastings algorithm 
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Allowing asymmetric jumping rules 
can be useful in increasing the speed of 
the random walk. 

The Metropolis-Hastings algorithm 



 

To prove that the stationary 
distribution is the target distribution, 
p(θ|y), consider any two points θa and 
θb with posterior densities labeled so 
that p(θb|y)Jt(θa|θb) ≥ p(θa|y)Jt(θb|θa).  

The Metropolis-Hastings algorithm 



 

If θt−1 follows the target distribution, 
then it is easy to show that the 
unconditional probability density of a 
transition from θa to θb is the same as 
the reverse transition. 
 

The Metropolis-Hastings algorithm 



 

The ideal Metropolis-Hastings jumping 
rule is simply to sample the proposal, 
θ∗, from the target distribution; that is, 
J(θ∗|θ) ≡ p(θ∗|y) for all θ.  

Relation between the jumping rule 
and efficiency of simulations 



Then the ratio r in (11.2) is always 
exactly 1, and the iterates θt are a 
sequence of independent draws from 
p(θ|y). In general, however, iterative 
simulation is applied to problems for 
which direct sampling is not possible. 

Relation between the jumping rule 
and efficiency of simulations 



 

A good jumping distribution has the 
following properties: 

• For any θ, it is easy to sample from J(θ∗|θ). 

• It is easy to compute the ratio r. 

Relation between the jumping rule 
and efficiency of simulations 



• Each jump goes a reasonable distance in the  

    parameter space (otherwise the random 

    walk moves too slowly). 

• The jumps are not rejected too frequently   

    (otherwise the random walk wastes too much 

    time standing still). 

Relation between the jumping rule 
and efficiency of simulations 




