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Use the collection of all the simulated draws from p(θ|y) to 

summarize the posterior density and to compute quantiles, 

moments, and other summaries of interest as needed. 

Posterior predictive simulations of unobserved outcomes 

can be obtained by simulation conditional on the drawn 

values of θ. 

Inference and assessing 
convergence 



Difficulties of inference from iterative  simulation. 

First, if the iterations have not proceeded long 

enough, the simulations may be grossly 

unrepresentative of the target distribution. 



Even when simulations have reached approximate 

convergence, early iterations still reflect the starting 

approximation rather than the target distribution 
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Difficulties of inference from iterative  simulation. 

The second problem with iterative simulation draws is 

their within-sequence correlation; aside from any 

convergence issues, simulation inference from 

correlated draws is generally less precise than from 

the same number of independent draws. 



Serial correlation in the simulations is not necessarily a problem because, 
at convergence, the draws are identically distributed as p(θ|y), and so 

when performing inferences, we ignore the order of the simulation 
draws in any case. But such correlation can cause inefficiencies in 

simulations. 

Figure  1c 



Difficulties of inference from iterative  simulation 

First, we attempt to design the simulation runs to allow effective monitoring of 

convergence, in particular by simulating multiple sequences with starting points 

dispersed throughout parameter space 

Second, we monitor the convergence of all quantities of interest by comparing 

variation between and within simulated sequences until ‘within’ variation roughly 

equals ‘between’ variation.  

Third, if the simulation efficiency is unacceptably low (in the sense of requiring too 

much real time on the computer to obtain approximate convergence of posterior 

inferences for quantities of interest), the algorithm can be altered, as we discuss in 

Sections 12.1 and 12.2. 
 

 



 

Discarding early iterations of the simulation runs 

To diminish the influence of the starting values, we generally 

discard the first half of each sequence and focus attention on the 

second half. Our inferences will be based on the assumption that 

the distributions of the simulated values     ,for large enough t, are 

close to the target distribution, p(θ|y). We refer to the practice of 

discarding early iterations in Markov chain simulation as warm-up; 

depending on the context, different warm-up fractions can be 

appropriate… 

t




Discarding early iterations of the simulation runs 

We adopt the general practice of discarding the first 

half as a conservative choice. For example, we might 

run 200 iterations and discard the first half. If 

approximate convergence has not yet been reached, 

we might then run another 200 iterations, now 

discarding all of the initial 200 iterations. 



Dependence of the iterations in each sequence 

In our applications, we have found it useful to skip 

iterations in problems with large numbers of 

parameters where computer storage is a problem, 

perhaps setting k so that the total number of 

iterations saved is no more than 1000.  
 



Multiple sequences with over-dispersed starting points 

Our recommended approach to assessing convergence of 

iterative simulation is based on comparing different simulated 

sequences. To see such disparities, we clearly need more than 

one independent sequence. Thus our plan is to simulate 

independently at least two sequences, with starting points drawn 

from an over-dispersed distribution . 



Monitoring scalar estimands 

We monitor each scalar estimand or other scalar quantities of 

interest separately. Estimands include all the parameters of 

interest in the model and any other quantities of interest. It is 

often useful also to monitor the value of the logarithm of the 

posterior density, which has probably already been computed if 

we are using a version of the Metropolis algorithm. 



Thank you  
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MONITORING CONVERGENCE 

mixing and stationarity 



 The figure  illustrates two of the challenges of monitoring convergence of 
iterative simulations. The first graph shows two sequences, each of which 
looks fine on its own and, indeed, when looked at separately would satisfy 
any reasonable convergence criterion, but when looked at together reveal a 
clear lack of convergence. The figure illustrates that, to achieve convergence, 
the sequences must together have mixed. 

a b 



The second graph shows two chains that have mixed, in the sense that 

they have traced out a common distribution, but they do not appear 

to have converged. The second graph illustrates that, to achieve 

convergence, each individual sequence must reach stationarity. 

 



CONVERGENCE DIAGNOSTICS 

Splitting each saved sequence into 

two parts 



 

 

    We diagnose convergence by checking mixing and stationarity . 

There are various ways to do this ; we apply a fairly simple approach in 

which we split each chain in half and check that all the resulting half 

sequences have mixed. This simultaneously tests mixing and 

stationarity . 



We start with some number of simulated sequences in which the warm-up 

period has already been discarded. We then take each of these chains and split 

into the first and second half.  

Let m be the number of chains and n be the length of each chain. We always 

simulate at least two sequences so that we can observe mixing; thus m is always 

at least 4. 

 



For example, suppose we simulate 5 chains, each of length 1000, and then 

discard the first half of each as warm-up. We are then left with 5 chains, each of 

length 500, and we split each into two parts: iterations 1–250 (originally 

iterations 501–750) and iterations 251–500 (originally iterations 751–1000). We 

now have m = 10 chains, each of length n = 250. 

 



ASSESSING MIXING  

between- and within-sequence 

variances 



Assessing mixing using between- and within-sequence variances 

 

For each scalar estimand ψ, we label the simulations as ψij (i =1, . . . , 

n; j =1, . . . , m), and we compute B and W , the between- and within-

sequence variances: 

 



      The between-sequence variance, B, contains a factor of n because 

it is based on the variance of the within-sequence means, ψ.j, each of 

which is an average of n values ψij.  

        



We can estimate var(ψ|y), the marginal posterior variance of the 

estimand, by a weighted average of W and B, namely               

𝑣𝑎𝑟 +(𝜓 𝑦 )=
𝑛−1

𝑛
W+

1

𝑛
B.  

This quantity overestimates the marginal posterior variance assuming 

the starting distribution is appropriately overdispersed, but is 

unbiased under stationarity, or in the limit n → ∞. This is analogous to 

the classical variance estimate with cluster sampling. 

 

 

 



Meanwhile, for any finite n, the ‘within’ variance W should be an 

underestimate of                   because the individual sequences have 

not had time to range over all of the target distribution and, as a result, 

will have less variability; in the limit as n → ∞, the expectation of W 

approaches           .  

 



We monitor convergence of the iterative simulation by estimating the 

factor by which the scale of the current distribution for ψ might be 

reduced if the simulations were continued in the limit n → ∞. This 

potential scale reduction is estimated by 

R =
𝑣𝑎𝑟 +(𝜓 𝑦 )

𝑊
, 

 



which declines to 1 as n → ∞. If the potential scale reduction is high, 

then we have reason to believe that proceeding with further 

simulations may improve our inference about the target distribution 

of the associated scalar estimand. 

 




