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Generalized Additive Models .

The traditional linear model has the form

E(Yle,Xz, R Xp)=a+ﬁ1X1+BzX2+ - +Bpo

In the regression setting, a generalized additive
model has the form

| E(Y[Xq, Xz, 0 - rXp)=0+f1(X1)+f2(X2)+ o +fp(Xp)

‘ Company Logo



! Generalized Additive Models .

We relate the mean of the binary response
u(X) = Pr(Y = 1|X) to the predictors via a linear
regression model and the logit link function:

nix) \_
108(1_u(x))— a+B1 X1 +B2 X+ - - - B, X,
The additive logistic regression model replaces
each linear term by a more general functional

form

log(Erm)= O+ (X)) * - - +,(Xp) |

-
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Generalized Additive Models .

In general, the conditional mean p(X) of a
response Y is related to an additive function of the

predictors via a link function g:

glu(X)]=a+f; (Xq ) Hf2(X)+ - - -+, (X))




! Generalized Additive Models .

Examples of classical link functions are the following:

* g(M) = M is the identity link, used for linear and additive
models for Gaussian response data.

* g(M) = logit(u) as above, or g(u) = probit(u), the probit link
function , for modeling binomial probabilities. The probit
function is the inverse Gaussian cumulative distribution

function: probit(u) = ®~1(u)

* g(M) = log(p) for log-linear or log-additive models for
Poisson count data.
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Generalized Additive Models .

How does the fj look like ?

f(X) = Z Bmhm(X),
m=1

h,, (X) : IRP — IR the mth transformation of X, m=1, . . ., M.
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! Generalized Additive Models .

-

Some simple and widely used examples of the h,, are
the following:

*h,,(X)=X,,, m=1,...,precovers the original linear
model.

*h,(X) = X]-2 or h,,(X) = X; - X allows us to augment the
Inputs with polynomial terms to achieve higher-order Taylor .

* h,y(X) = log(X;) , \/7 , ..., permits other nonlinear
transformations of single inputs.

*h,,(X) =I(L,, < Xy < U,,), an indicator for a region of X,,,. —




Piecewise Polynomials

hl(x)=1(x<£l)’ h2(X)=I(El.<.X<£2)’ h3(X)=I(£2.<.X)

Piecewise Constant




! Piecewise Polynomials 'ZI:CE”

We add Three additional basis functions :

hpizs(X)=h,(X)-X,m=1,...,3.
Piecewise Linear




! Piecewise Polynomials ‘F '

Then we add two constraint conditions:

fE1)=f(617) & Br+E1fs = Po + & Ps
f&)=f(ET) & Pat&afs = Bz + EPs

Continuous Piecewise Linear




! Piecewise Polynomials .

A more direct way to proceed In this case Is to
use a basis that incorporates the constraints:

hi(X) = 1,h(X) = X, h3(X) = (X=&1)+, ha(X) = (X=&) 4,

] (X-¢1)+= {X _051 :i 2?1




! Piecewise Polynomials ‘iffff‘ff ’

We often prefer smoother functions, and these can be
achieved by increasing the order of the local polynomial.

Discontinuous Continuous




! Piecewise Polynomials ‘iffff‘ff ’

The function in this figure is continuous, and has
continuous first and second derivatives at the knots.

Continuous First Derivative Continuous Second Derivative




! Piecewise Polynomials .

cubic spline

The function has two continuous derivatives at the knots.

It iIs known as a cubic spline.
It is not hard to show that the basis represents a cubic

spline with knots at 1 and 2:

hi(X)=1, ho(X)=X% hs(X)=(X-&)2,
| h(X)=X, h(X)=X3, he(X)=(X - &)

)




! Piecewise Polynomials .

More generally, an order M spline with knotsj,j=1, ... ,K
IS a piecewise-polynomial of order M, and has continuous

derivatives up to order M - 2.
Likewise the general form for the truncated-power basis set

would be:

X =1,
- t=1,... K

hj(X)
— hp(X)




! Fitting Additive Models .

The additive model has the form

Y =a+ Z?zlfj(xj)ﬂ

Consider the following problem : among all function
fi.f1.f2, - - -, f with two continuous derivatives, find

one that minimizes the penalized residual sum of
squares

PRSS(O( flszs fp) Z 1(y1 — = Zp 1fj(xr,)))2
jljffl (t)zdt -

i




! Fitting Additive Models .

The Backfitting Algorithm for Additive Models

1. Initialize: @ = Zl 1 Vi» fj = 0,Vi,j.

2. Cycle: 1,2, - - - ,p.

jc} < Sf[{yi e Zki} ﬁc(xlk)}N]
fi e Fi- Zﬁ(xu)

until the functions fjchange Iess than a prespecified

‘ threshold
| B -




! Additive Logistic Regression

In this model,

B {0, no event
Y=, event happen

We wish to model Pr(Y =1|X), the probability
of an event given values of the prognostic

factors

XU =(xq1,000, xp).

) .




! Additive Logistic Regression

The generalized additive logistic model has
the form:

P,.(Y=1|X)
1095 v=om)

=a+ fl(x1)+...+fp(xp)

The functions f., f,, - -, fp are estimated

by a back fitting algorithm with in a
Newton-Raphson procedure, shown in
Algorithm.

-




! Additive Logistic Regression

-

Local Scoring Algorithm for the Additive
Logistic Regression Model.

1. Compute starting values:a=log[y/(1-y)], where y=ave(y;),
the sample proportion of ones, and set f;=0, V]

2. Define f;=a + X, f;(x;;)andp;=1/[1+exp(-7;)].
[terate:

(¥i—D))
pi(1-py)

(a) Construct the working target variablez;=7; +

(b) Construct weights w;=p;(1-p;)

(c) Fit an additive model to the targets z; with weights w;,
using a weighted back fitting algorithm. This gives new
estimates @, f;, vj

3. Continue step2 until the change in the functions falls below a|—
prespecified threshold.




! Additive Logistic Regression

Example : Predicting Email Spam

We apply a generalized additive model to the spam
data. The data consists of information from 4601
email messages, in a study to screen email for

“spam “ (i.e. junk email).




! Fitting Additive Models .

The response variable is binary, with values email or
spam, and there are 57 predictors as described below:

48 quantitative predictors—the percentage of words in
the email that match a given word. Examples include
business, address, internet, free and george. The idea
was that these could be customized for Individual users.

<6 quantitative predictors—the percentage of characters
in the email That match a given character. The
characters are ch;, ch(, ch[, ch!, ch$, and ch#.

“The average length of uninterrupted sequences of
capital letters:CAPAVE.

“The length of the longest uninterrupted sequences of
capital letters: CAPMAX.

“The sum of the length of uninterrupted sequences of
capital letters: CAPTOT.




! Additive Logistic Regression

In this model:
B {0, email
Y=, spam

A test set of size 1536 was randomly chosen,
leaving 3065 observations in the training set. A
generalized additive model was fit, using a cubic
smoothing spline with a nominal four degrees of
freedom for each predictor.

The test error rates are shown in Tablel; the over
all error rate is 5.3%. By comparison, a linear
q logistic regression has a test error rate of 7.6%. [




! Additive Logistic Regression

Table 1

Predicted Class

True Class | email (0) spam (1)

email (0) | 58,37 2.5%
am (1) 3.0% 36.3%

— Table2 shows the predictors that are highly significant in

the additive model.




Additive Logistic Regression

Table?2
Name Num. df Coefficient Std. Error Z Score Nonlinear
P-value
Puasitive effects
our 2 3.9 0.566 0.114 4.970 D.052
over § 3.9 0.244 0.195 1.249 0.004
remove T 4.0 0.949 LI&3 2.201 0.093
internet = 4.0 0.524 D176 20974 0.028
free L 3.9 0507 0127 4.010 0065
tusiness 17 3.5 0.779 (LIBG 4.179 0.194
hpl 26 3.8 0.045 0.250) 0.181 0.002
ch! 52 4.0 0.674 0128 5.283 0.164
ch$ 23 3.9 1.419 (L2850 5.062 0.354
CAPMAX 518) 3.8 0.247 (L2258 L.0=0 (L0000
CAPTOT a7 4.0 0.755 (L1165 4.566 0.063
Negative effects
hp 25 3.9 —1.404 0224 —65.262 0.140
george 27 3.7 —5.003 (L.744 —6.722 0.045
1995 37 3.5 —(.6T2 0.191 —3.012 0.011
re 45 3.9 —0.620 0.133 —4.649 0.597 -
edu 46 4.0 —1.183 (L2005 —0.647 (Lo




! Additive Logistic Regression

The figure shows the estimated functions for the significant
predictors appearinag in TableZ.
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