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Overview

- basic ideas about bayesian hierarchical models

- exchangeability

- bayesian analysis of conjugate hierarchical model

- bayesian analysis of normal hierarchical model



Basic ideas about bayesian
hierarchical models

- Hyperparameter: parameter of the prior distribution

- Hyperprior: the prior distribution of hyperparameter



- Say a random variable Y follows a normal
distribution with parameter 8 as the mean and 1
as the variance, that is Y |0~ N(6,1)

- The parameter ¢ has a prior distribution given by a
normal distribution with mean © and variance 1,

€. 0| pu~ N(u,1) Till now,it's the bayesian model we

- are familiar with.

- Furthermore,if # follows another distribution given,
for example, by the standard normal distribution,
N(0,1)

- then the parameter u is called the hyperparameter,
while its distribution given by N(0,1) is an example
of a hyperprior distribution.



Bayesian analysis is about estimating parameters or something
else.Significantly different from the traditional approach,by
which we can get a point estimation of a parameter,bayesian
model grants us a posterior density just by some simple
assumptions.

In bayesian hierarchical models,by assighing a hyperprior,we
can finally get a joint posterior density,and a marginal
posterior density for hyper parameter as well.
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control groups and the current group of rats.The numerator is the

incidence of tumor in a group and the denominator is the amount of rats

In a group.

Given a prior distribution and a likelihood,we can derive a posterior

distribution given hyperparameter.Bayesian hierarchical model can be used

to derive a hyperposterior once given a hyperprior.

First of allwe'd like to introduce a conventional way to estimate the

hyperparameters—point estimation.



Point estimation for hyerparameter

iid
Let vector (x1...xn) denotes the X1, - X |0 ~ Bern(6)

incidence of tumor in each

group B ~ BEtﬂ(ﬂ:,ﬁ]
from the previous lecturewe know the posterior of ©
given hyperparameter follows a distribution like this:

Beta(a + s, + f)

P(Blx1, ... xa) o plx1, ..., xa|0)p(8)
= 6°(1-6)"6""'(1-0)""
— Hs-d—l(l_ﬁ}Frﬁ—11

In our case,s iIs the number of tumor incidence in the
current group,which equals 4,and f equals 10.Therefore the
posterior for for 8 follows Betala + 4, B + 10).



Approximate estimation for hyperparameter

Using the frequency of tumor incidence in each historical control
group,we can get a point estimation for aand B.

By calculation,we get the mean value and standard deviation of %
s 0.136 and 0.103. |

The mean value and variance of a Beta(a, B) distribution is:

E(f) = -2

a-+5

o . a3
1“-’"('9}  (a4p8)*(a+p+1)

Let the population mean value equals 0.136 and the variance equals
0.103,we can derive the point estimation for (o, B) is (1.4, 8.6).

Therefore, & 71 yields a Beta(5.4, 18.6) posterior distribution.




The problem of a point estimation

These analyses require that the current tumor risk, ¢ /1, and the /0
historical tumor risks, 81, . .., 8 70, be considered a random
sample from a common distribution beta(a , B) which is an
assumption that would be invalidated.Even if this assumption is
validated the frequency of each historical group can't be regarded as
the observated value of 6.

In one word, the point estimation for hyperparameter can only be
treated as a rough approximation.

However,bayesian hierarchical model offers us a solid estimation for
hyperparameter.



Why we use exchangeability?

Generalizing from the example of the previous section, consider a

set of experiments j=1,..J,in which experiment j has data (vector) y,
and parameter (vector) 6,with likelihood

p(y”Eq}.Some of the parameters in different experiments may
overlap.for example, each data vector y, may be a sample of

observations from a normal distribution with mean U; and common
variance o<.in which case EIJ-:(U,UE).IH order to creat a joint

probability model for all the parameters 8,we use the crucial
idea of exchangeability.
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Exchangeability

If no information—other than the data y—is
available to distinguish any of the 6/s from any of
the others, and no ordering or grouping of the
parameters can be made, one must assume
symmetry among the parameters in their prior

distribution. This symmetry is of exchangeability.For
example, rolling of a die.
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Generally, the less we know about a problem, the more
confidently we can make claims of exchangeability. the
parameters (8,...,8) are exchangeable in their joint distribution
if p(6;....8;) is invariant to permutations of the indexes
(1, . .., J)For example, in the rat tumor problem, suppose
we have no information to distinguish the 71 experiments,
other than the sample sizes n., which presumably are not

related to the values of 6;; we therefore use an exchangeable
model for the 6 's.

2014-11-25



The simplest form of an exchangeable distribution has

each of the parameters 6,as an independent sample
from a prior (or population) distribution governed by
some unknown parameter vector ®. thus,

p@|¢)= Hp(f»’ [ ¢)
In general, ® is unknown, sn our distribution for 8 must
average over our uncertainty in @:

p(0) = [ (L1 10,1 )p($)d
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Example. Exchangeability and sampling

We have selected eight states out of the United States and recorded
the divorce rate per 1000 population in each state in 1981. Call
these y,,....... ,Ys. Since you have no information to distinguish any of
the eight states from the others,you must model them exchangeably.
You might use a beta distribution for the eight y; 's, a logit normal, or
some other prior distribution restricted to the range [0, 1].Unless you
are familiar with divorce statistics in the United States, your

distribution on (y+,....... ,¥s) should be fairly vague.
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5.8 6.6 7.8 5.6 7.0 7.1 5.4

y8, would probably be centered around 6.5 and have

most of its mass between 5.0 and 8.0. Changing the
Indexing does not change the joint distribution.If we relabel
the remaining value to be any other y, the posterior estimate
would be the same. y; are exchangeable but they are not
Independent as we assume that the divorce rate in the
eighth unobserved state is probably similar to the observed
i G



HMEM o

Now, before the seven data points were observed,the eight divorce rates

should still be modeled exchangeably.it seems reasonable to assume that

Utah, with its large Mormon population, has a much lower divorce rate, and
Nevada, with its liberal divorce laws, has a much higher divorce rate, than
the remaining six states.Now, even before seeing the seven observed
values, you cannot assign an exchangeable prior distribution to the set of
eight divorce rates, since you have information that distinguishes y8 from
the other seven numbers, here suspecting it is larger than any of the others.
Onceyy, ..., yyhave been observed, a reasonable posterior distribution
for ys plausibly should have most of its mass above the largest observed
rate.The answer is Nevada’s divorce rate in 1981.Incidentally, Nevada's

divgred Zate in 1981 was 13.9 per 1000 population.



Exchangeability when additional information is
available on the units

Often observations are not fully exchangeable, but are partially or

conditionally exchange-able:

* |[f observations can be grouped, we may make hierarchical model,
where each group has its own submodel, but the group properties
are unknown. If we assume that group properties are exchangeable,

we can use a common prior distribution for the group properties.

* If y, has additional information x; so that y; are not exchangeable but
(vi, %;) still are exchangeable, then we can make a joint model for (y;,

X;) or a conditional model for y;|x;.
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EXCHANGEABILITY AND HIERARCHICAL
MODELS

In general, the usual way to model exchangeability with covariates is

through conditional independence:

In this way, exchangeable models become almost universally
applicable, because any information available to distinguish different

units should be encoded in the x and y variables.
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The full Bayesian treatment of the
hierarchical model

Returning to the problem of inference, the key
‘hierarchical’ part of these models is that ® is not known
and thus has its own prior distribution, p(®). The
appropriate Bayesian posterior distribution is of the

vector (P, 8). The joint prior distribution is

p(9.0)=p(d)p(0|9)
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And the joint posterior distribution is

p(@,0|y) < p(¢,0)p(y|¢.0)

= p(9,0)p(y|0)
with the latter simplification holding because the data

distribution, p(y|®, 6), depends only on 6; the
hyperparameters @ affect y only through 8. Previously,
we assumed ® was known which is unrealistic; nhow we
Include the uncertainty in @ in the model.
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EXCHANGEABILITY AND HIERARCHICAL MODELS

In the rat tumor example, we have already noted that the
sample sizes nj are the only available information to distinguish
the different experiments. It does not seem likely that nj would
be a useful variable for modeling tumor rates.

So in the rat tumor example, yj were exchangeable as no
additional knowledge was available on experimental conditions. If
we knew that specific batches of experiments were made iIn
different laboratories we could assume partial exchangeability
and use two level hierarchical model to model variation within
each laboratory and between laboratories.



Bayesian analysis of conjugate hierarchical model

Application to the model for rat tumors:
Model: yj — Bin(nj , ) (i.id)
8j — Beta(a, B)

The parameters 6] are assumed to be independent samples
from a single beta distribution.

At last we can assign a noninformative hyperprior distribution

p(a, B) to reflect our ignorance about the unknown
hyperparameters.



Joint posterior distribution for parameter and hyperparameter:

p(f, o, Bly) o ple, F)p( !’:i'|r| S)ply|d, a,

x pla, ‘”H {fr-l‘-jj}ﬁ? 1 1_ ; 'i IHEUJ 1_ :II i~ Y5 (l:]

By integrating ¢ GLI'IZ of the joint pastener we can obtain a
posterior distribution for hyperparameter(a, B):

u+J‘ [a+y;))T'(B+n; —y;)
['(a)l(5 I'(a+8+ ny) ' (2)

J
pla, Bly) o p(a, B) H
j=1

Dividing equation (1) by equation (2) we can obtain the
conditional posterior distribution for @ given (a, B):

ﬂ:+ B+mn; J H¢1+y3_1(1 _ Bj}ﬂ--rij—yr-—l.

J
plfla, B,y)
| HT (a+y;)T(B+nij—y;) 7



The estimation of hyperparameter

Now hyperpassign a noninformative rior density:

=

plo, B) x (a+3) 7'

on the natural transformed scale:

p (lnlg{%}.lfrg(cn+.i}l) x afB(a+8)""
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First try at a contour plot of the marginal posterior density of
(Iﬂg(%), log(a + ﬁ)) for the rat tumor example. Contour lines

are at 0.05, 0.15, . . ., 0.95 times the density at the mode.



Computing the marginal posterior density of the
hyperparameters. Now that we have established a full
probability model for data and parameters, we compute the
marginal posterior distribution of the hyperparameters. Figure
shows a contour plot of the unnormalized marginal posterior

density on a grid of values of (Iug(%).mg(a +£}) .To create

the plot, we first compute the logarithm of the density function
with prior density , multiplying by the Jacobian to obtain the

density p(iﬂg(g), Eﬂg(ﬂt+ﬁ)|y). We set a grid in the range
(Eag(%),mg(cr+ﬁ))5 [—2.5,—1] x [1.5,3], which is centered near
our earlier point estimate (—1.8,2.3) (that is, (a, )= (1.4,8.6))
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Figure:Contour plot of the marginal posterior density of
(Eﬂg(ﬁ), Iﬂg(a+ﬁ))fnr the rat tumor example. Contour lines are

at 0.05, 0.15, . . ., 0.95 times the density at the mode.



We recompute p(!ﬂg(ﬁ),!ﬂg(ﬂ+ﬁ)|y), this time in the

range(mg(g), log(a + ,8)) € [—2.3,—1.3] X [1,5]. The resulting grid,

shown in Figure a, displays essentially all of the marginal posterior
distribution. The graphs show that the marginal posterior
distribution of the hyperparameters, under this transformation, is
approximately symmetric about the mode, roughly (-1.75, 2.8).
This corresponds to approximate values of (a, 8) = (2.4,14.0) which
differs somewhat from the crude estimate obtained earlier.



¢ We can then compute posterior moments based on the grid of
(Emg(%}, log(a + ,8)) -for example,

. : : a
E(aly) is estimated by Z 0 ~p[1u§_j;f_—ij. log(a+3)|y).

log(2 ), log(oed)

+ Asaresult ,E(aly) = 2.4 and E(B|y) = 14.3.



Bayesian analysis of a exchangeable normal
hierarchical model

We assume (yl,...yj| @ 1...., 8 ))(population variance known) is
independent,that is:

yj|0; ~ N(ﬁj.ﬂf}, t:ff known

Conditional prior distribution given hyperparameter follows a
normal distribution with mean of 1 and standard variance =

J
}J[H]-......HJL:LT}I = H:{[Hj“h?j}
i=1

We also assign a noninformative uniform hyperprior distribution
to u, given T(we assume a uniform conditional density) :

p(u, 1) = p(u|t)p(t) == p(1)



The data structure

Consider J independent experiments, with experiment j estimating the parameter #; from

n; independent normally distributed data points, y;;, each with known error variance a:

that is,
yij|0; ~ N(0;,06%), fori=1,....n5; j=1,...,J (5.11)

Using standard notation from the analysis of variance, we label the sample mean of each

group j as
- 3w

with sampling variance

that's sample mean for group | given prior follows a normal distribution :

7,105 ~ N(8;,07),



Joint posterior distribution:

p(@ p,mly) o plp.7)p(@|p. 7)p(y|R)

J J
X j}[;!.T}H?\'[f}jlﬂ-Tj]Hx{.ﬁjlﬂj-nfj (1}
i=1 J=1

By intergrating ) out of the joint posterior density,we can get
the marginal posterior density of (u, t)which is p(u,t

|y )(2).Then we divide joint posterior by p(u, T |y ),we can
obtain the marginal posterior distribution of 8 conditional on
(u, 1), following a normal distribution:

051, 7,y ~ N(6;,V;),

1 — 1

STl 3 T T H 1
@; = — ; : and V; = .

IS oy T




The mean value equation for parameter shows that the mean
value is a precision-weighted average of the prior population
mean and the sample mean of the jth group.

0 = —

1l = 1
T4 5 T Tl 1
L

1
P +

T (=

The posterior variance equation shows that the variance is a
combination of the prior precision and data precision.



By integrating © out of posterior,we get the marginal
posterior of hyperparameter:

J
plpe, 7|y) x plp, 7) H\{H-' ;r,n’f + 7). (l}

j=1

By integrating (1,8 ) out of the joint posterior,we can get the
marginal posterior of t which is p( T |y).Then we divide
marginal posterior of hyperparameter by it we can get the
marginal posterior density of u given t which follows a

normal distributi-—-
plT oy ~ N, V),

- J
Laj=1 .-'r'j'—.--'t. I 1_
L= : and E .
f v ! . ol +72

= i=1 gd4r2 i=1




marginal posterior of =

Two ways to get marginal posterior of t:

Using the following equation (both of the numerator and denominator
have been derived)

plpe, 7ly)

plp|T. )

plT) n:’zl _\:{ﬁ_J|;4_ﬁrf + 7%)
Nz, Viu) '

pitly) =

Alternatively we can integrate 1 out of marginal posterior of
hyperparameter density and we will get the marginal posterior
distribution of t:

g T e | : i
P{.T:]]._[_; ihf!f__; ”*"T_f +-'-_}:|
N(ga|@, Vi)

plT|y) =<

o — .
. . 5 1 40 (T ; — it)°
ke _{rr} =+ 7<)
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