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Abstract

Methods for choosing a fixed set of knot locations in additive spline models are
fairly well established in the statistical literature. While most of these methods are in
principle directly extendable to non-additive surface models, they are less likely to be
successful in that setting because of the curse of dimensionality, especially when there
are more than a couple of covariates. We propose a regression model for a multivariate
Gaussian response that combines both additive splines and interactive splines, and a
highly efficient MCMC algorithm that updates all the knot locations jointly. We use
shrinkage priors to avoid overfitting with different estimated shrinkage factors for the
additive and surface part of the model, and also different shrinkage parameters for the
different response variables. This makes it possible for the model to adapt to varying
degrees of nonlinearity in different parts of the data in a parsimonious way. Simulated
data and an application to firm leverage data show that the approach is computationally
efficient, and that allowing for freely estimated knot locations can offer a substantial
improvement in out-of-sample predictive performance.
Keywords: Bayesian inference, Markov chain Monte Carlo, Surface regression, Splines,
Free knots.
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1 Introduction

Flexible models of the regression function E(y|x) has been an active research field for decades,
see e.g. Ruppert et al. (2003) for a recent textbook introduction and further references.
Intensive research was initially devoted to kernel regression methods (Nadaraya 1964, Watson
1964, Gasser & Müller 1979), and later followed by a large literature on spline regression
modeling. A spline is a linear regression on a set of nonlinear basis functions of the original
regressors. Each basis function is defined from a knot in regressor space and the knots
determine the points of flexibility of the fitted regression function. This gives rise to a locally
adaptable model with continuity at the knots.

The most widely used models assume additivity in the regressors, i.e. E(y|x1, ..., xq) =∑q
j=1 fj(xj), where fj(xj) is a spline function for the jth regressor (Hastie & Tibshirani

1990). Assuming additivity is clearly a very convenient simplification, but it is also somewhat
unnatural to make such a strong assumption in an otherwise very flexible model. This
has motivated research on surface models with interactions between regressors. One line of
research extends the additive models by including higher-order interactions of the spline basis
functions, see e.g. the structured ANOVA approach or the tensor product basis in Hastie et al.
(2009). The multivariate adaptive regression splines (MARS) introduced in Friedman (1991)
is a version of the tensor product spline with interactions sequentially entering the model
using a greedy algorithm. Regression trees (Breiman et al. 1984) is another popular class
of models, with the BART model in Chipman et al. (2010) as its most prominent Bayesian
member. Our paper follows a recent strand of literature that models surfaces using radial
basis functions splines, see e.g. Buhmann (2003). A radial basis function is defined in Rq and
has a value that depends only on the distance from a covariate vector (x) to its q-dimensional
knot (ξ), e.g. the cubic radial basis ‖x− ξ‖3, where x = (x1, ..., xq)

′, ξ = (ξ1, ..., ξq)
′ and ‖·‖

is the Euclidean norm. The model is again linear in the basis expanded space.
The basic challenge in spline regression is the choice of knot locations. This problem is

clearly much harder for a general surface than it is for additive models since any manage-
able set of q-dimensional knots are necessarily sparse in Rq when q is moderate or large, a
manifestation of the curse of dimensionality. The state-of-the-art inferential procedures place
the knots at the centroids from a clustering of the regressor observations. The selected knot
locations are kept fixed throughout the analysis. To prevent overfitting, Bayesian variable
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selection methods are used to automatically remove or downweight the influence of the knots
using Markov chain Monte Carlo (MCMC) methods (Smith & Kohn 1996). The reversible
jump MCMC (RJMCMC) in for example Denison et al. (2002) treats the number of knots as
unknown subject to an upper bound, but the location of the knots are still fixed throughout
the analysis.

Using a fixed set of knot locations is impractical when estimating a surface with more
than a few regressors. An algorithm that can move the knots rapidly over the regressor
space is expected to be a clear improvement. All previous attempts have focused on efficient
selection of fixed knots, and have paid little attention to moving the knots. The otherwise very
elaborate RJMCMC approaches in Dimatteo et al. (2001), Denison et al. (1998), Gulam Razul
et al. (2003) and Holmes & Mallick (2003) all include a very simple MCMC update where a
single knot is re-located using a Metropolis random walk step with a proposal variance that
is the same for all knots. There are typically strong dependencies between the knots, and
local one-knot-at-a-time moves will lead to slow convergence of the algorithm and inability to
escape from local modes. This is especially true in the surface case with more than a couple
of regressors.

The main contribution in this paper is a highly efficient MCMC algorithm for the Gaus-
sian multivariate surface regression where the locations of all knots are updated jointly.
Rapid mixing of the knot locations is obtained from the following two features of our algo-
rithm. First, the knots are simulated from a marginal posterior where the high-dimensional
regression coefficients have been integrated out analytically. Second, the knots’ proposal
distribution is tailored to the posterior distribution using the posterior gradient, which we
derive in compact analytical form and evaluate efficiently by a careful use of sparsity. We
use a shrinkage prior on the regression coefficients to prevent overfitting, where the shrinkage
hyperparameters are treated as unknowns and are estimated in a separate updating step.
Also this step is tailored to the posterior using the gradient in analytical form.

Even a highly efficient MCMC algorithm is likely to have problems exploring the joint
posterior of many surface knots in a high-dimensional covariate space. To deal with this, our
model is decomposed into three parts: i) the original covariates entering in linear form, ii)
additive spline basis functions and iii) radial basis functions for capturing the remaining part
of the surface and interactions. The idea is to let the additive part of the model capture the
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bulk of the nonlinearities so that the radial basis functions can focus exclusively on modeling
the interactions. This way we can keep the number of knots in the interaction part of the
model to a minimum, which is beneficial for MCMC convergence. We use separate shrinkage
priors for the three parts of the model. Moreover, we also allow for separate shrinkage
parameters in each response equation. This gives us an extremely flexible yet potentially
parsimonious model where we can shrink out e.g. the surface part of the model in a subset
of the response equations.

Our MCMC scheme is designed for a fixed number of knots, and we select the number of
knots by Bayesian cross-validation of the log predictive score using parallel computing, see
Section 3.3. This has the disadvantage of not accounting for the uncertainty regarding the
number of knots as is done in RJMCMC schemes, but the benefits are substantially more
robustness to variations in the prior and improved MCMC efficiency.

We illustrate our algorithm on simulated and real data, and compare the predictive per-
formance of the models using Bayesian cross-validation techniques. We find that the free
knots model constantly outperforms the model with fixed knots. Additionally, we find it is
easier to obtain better fitting result by combining additive knots and surface knots in the
model.

2 Bayesian multivariate surface regression

2.1 The model

Our proposed model is a Gaussian multivariate regression with three sets of covariates:

Y = XoBo +Xa(ξa)Ba +Xs(ξs)Bs +E, (1)

where Y (n × p) contains n observations on p response variables, and the rows of E are
error vectors assumed to be iid Np(0,Σ). The matrix Xo(n × qo) contains the original
regressors (first column is a vector of ones for the intercept) and Bo holds the corresponding
regression coefficients. The qa columns of the matrix Xa(ξa) are additive splines functions
of the covariates in Xo. Our notation makes it clear that Xa depends on the knots ξa. Note
that the knots in the additive part of the model are scalars, and that our model allows for
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unequal number of knots in the different covariates. Finally, Xs(ξs) contains the surface, or
interaction, part of the model. The knots in ξs are qo-dimensional vectors. Note how this
decomposition makes it possible for the additive part of the model to capture the main part
of the nonlinearities so that the number of knots in Xs is kept to a minimum. We will refer
to the three different parts of the model as the linear component, the additive component and
the surface component, respectively. We will refer to ξa and ξs as the additive and surface
knots, respectively. Likewise, Ba and Bs are the additive and surface coefficients.

There are a large number of different spline bases that one can use for the additive part
of the model. The menu of choices for the surface basis is more limited, see Denison et al.
(2002) for a survey of the most commonly used bases. We will use thin-plate splines for
illustration, but our approach can be used with any basis with trivial changes, see Section 3
and Appendix A for computational details. The thin-plate spline basis in the surface case is
of the form

xsj(ξsj) = ‖xo − ξsj‖2 ln ‖xo − ξsj‖, j = 1, ..., qs, (2)

where xo is one of the original data points and ξsj is the jth qo-dimensional surface knot.
The univariate thin-plate basis used in the additive part is a special case of the multivariate
thin-plate in (2) where both the data point and the knot are one-dimensional.

For notational convenience, we sometimes write model (1) in compact form

Y = XB +E,

where X = [Xo,Xa,Xs] is the n× q design matrix (q = qo + qa + qs) and B = [B
′
o,B

′
a,B

′
s]
′ .

Define also bi = vecBi as the vectorization of the coefficients matrix Bi, and b = [b
′
o, b

′
a, b

′
s]
′ .

For a given set of fixed knot locations, the model in (1) is linear in the regression co-
efficients B. As explained in the Introduction, the great challenge with spline models is
the choice of knot locations. This is especially true in the surface case where the curse of
dimensionality makes it really hard to distribute the multi-dimensional knots in Rqo in an ef-
fective way. To get a fair coverage of knots in the covariate space, a recommended approach
is to place the knots at the cluster centers from some clustering algorithm, e.g. k-means
clustering or using a mixture of multivariate normals, see Smith & Kohn (1996) and Denison
et al. (1998). This typically leads to many redundant knots (since the response variables are
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not used to aid the clustering) which is a source of overfitting. One solution is to remove
(downweight) the knots by Bayesian variable selection (Smith & Kohn 1996), possibly in a
RJMCMC approach, see e.g. Dimatteo et al. (2001) and Denison et al. (2002). Nevertheless,
using a set of pre-determined knots is unlikely to work well in the surface case with more
than a handful of regressors.

We will treat the knot locations in ξa and ξs as unknown parameters to be estimated.
This is in principle straightforward from a Bayesian point of view, but great care is needed
in the actual implementation of the posterior computations. We propose an efficient MCMC
scheme for sampling from the joint posterior of the all knot locations and the regression
coefficients, see Section 3 for details. The model is clearly highly (over)parametrized and in
need of some regularization of the parameters. The two main regularization techniques in
Bayesian analysis are shrinkage priors and variable (knot) selection priors. Variable selection
can in principle be incorporated in the analysis, but would be computationally demanding
since the number of gradient evaluations needed in our MCMC algorithm would increase
dramatically. This is important since evaluating the gradient with respect to the knots is
time-consuming as the knot locations enter the likelihood in a very complicated nonlinear way;
see Section 3.2 for details. Moreover, part of the attraction of variable selection is that they
also provide interpretable measures of variable importance; this is much less interesting here
since the covariates correspond to knot locations, which are not interesting in themselves. We
have therefore chosen to achieving parsimony with shrinkage priors that pull the regression
coefficients towards zero (or any other reference point if so desired), see Section 2.2 for
details. We allow for separate shrinkage parameters for the linear, additive and surface parts
of the model, and separate shrinkage parameters for the p responses within each of the three
model parts. The shrinkage parameters are treated as unknowns and estimated, so that, for
example, the surface part can be shrunk towards zero if this agrees with the data. Allowing
the knots to move freely in covariate space introduces a knot switching problem similar to
the well-known label switching problem in mixture models. The likelihood is invariant to a
switch of two knot locations and their regression coefficients. This lack of identification is
not important if our aim is to model the regression surface E(y|x), without regard to the
posterior of the individual knot locations (Geweke 2007). Also, the MCMC draws of the knot
locations can also be used to construct heat maps in covariate space to represent the density
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of knots in a certain regions. Such heat maps are clearly also immune to the knot switching
problem.

2.2 The prior

We now introduce an easily specified shrinkage prior for the three sets of regression coefficients
Bo, Ba and Bs and the covariance matrix Σ, conditional on the knots. The prior for b and
Σ are set as

vecBi|Σ, λi ∼ N
(
µi, Λ

1/2
i ΣΛ

1/2
i ⊗ P−1i

)
, i ∈ {o, a, s},

Σ ∼ IW (n0S0, n0) ,

with prior independence between the Bi. The prior mean of vecBi is µi, which we set to zero
in our shrinkage prior. Λi = diag(λi) = diag(λi,1, ..., λi,p), Pi is a positive definite symmetric
matrix. IW( · ) denotes the inverse Wishart distribution, with location matrix S0 and degrees
of freedom n0. Pi is typically either the identity matrix or Pi = X ′iXi. The latter choice has
been termed a g-prior by Zellner (1986) and has the advantage of automatically adjusting
for the different scales of the covariates. Setting λi = n makes the information content of
the prior equivalent to a single data point and is usually called the unit information prior.
The choice of Pi = Iqi can prevent the design matrix from falling into singularity problem
when some of the basis functions are highly correlated, which can easily happen with many
spline knots. See also the discussion in Denison et al. (2002). Our default choice is therefore
Po = X ′oXo, Pa = Iqa and Ps = Iqs . Other shrinkage priors on the regression coefficients
can be used in our approach, for example the Laplace distribution leading to the popular
Lasso (Tibshirani 1996), but they will typically not allow us to integrate out the regression
coefficents analytically, see Section 3.1. The optimal choice of shrinkage prior depends on the
unknown data generating model (a normal prior is better when all coefficients have roughly
the same magnitude; Lasso is better when many coefficients are close to zero, but some are
really large etc).

We also estimate the shrinkage parameters, λo, λa and λs via a Bayesian approach.
Note that our prior constructions for B allow for separate shrinkage of the linear, additive
and surface components. This gives us automatic regularization/shrinkage of the regression
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coefficients and helps to avoid problems with overfitting. Our MCMC scheme in Section
3 allows for a user-specified prior on λij, for i ∈ {o, a, s} and j = 1, 2, ..., p of essentially
any functional form. However the default prior of λij in this paper follows a log normal
distribution with mean of n/2 and standard deviation of n/2 in order to ensure that both
tight and flat shrinkages are attainable within one standard deviation in the prior. For
computational convenience, we use a log link for λij and make inference on log(λij). As a
result the preceding prior on λij yields a normal prior for log(λij) with mean [log(n)− 3/2 ·
log(2)] and variance log(2).

We use the same number of additive knots for each covariate in the simulations and
the application in Section 4, but it should be clear that our approach also permits unequal
number of knots in the different covariates. There is no particular requirements for the prior
on the knots, but a vague prior should permit the knots to move freely in covariate space.
Our default prior assumes independent knot locations following a normal distribution. The
mean of the knots comes from the centers of a k -means clustering of the covariates. In the
additive case, the prior variance of all the knots in the kth covariate is c2(a′a)−1, where a is
the kth column ofXo. Similarly, the prior covariance matrix of a surface knot is c2(X ′oXo)

−1.
We use c2 = n as the default setting.

The hyperparameter S0 in the IW prior for Σ is set equal to the estimated error covariance
matrix from the fitted linear model Ŷ = XoB̂o. A small degrees of freedom (n0) gives diffuse
prior on Σ and n0 = 10 is set as the default.

For notational convenience and further computational implementation, we write the
prior for the regression coefficients in condensed form as b|Σ,λ ∼ N (µ∗,Σb) where λ =

(λ′o,λ
′
a,λ

′
s)
′, µ∗ = (µ′o,µ

′
a,µ

′
s)
′, Σb = (Λ1/2ΣKΛ1/2) > P−1, Λ = diag(λ), ΣK is a three-

block diagonal matrix with Σ on each block, P = diag(Po,Pa,Ps) is a block diagonal matrix
and A>C denotes the Khatri-Rao product (Khatri & Rao 1968) which is Kronecker prod-
uct of the corresponding blocks of matrices A and C. It will also be convenient to define
β = vecB. Note that b and β contain the same elements with two different stacking orders.
As a result, β|Σ,λ ∼ N (µ,Σβ) where µ and Σβ essentially have the same entries as µ∗ and
Σb have, respectively.

8



3 The posterior inference

3.1 The posterior

The posterior distribution can be decomposed as

p(B,Σ, ξ,λ|Y ,X) = p(B|ξ,λ,Σ,Y ,X)p(ξ,λ,Σ|Y ,X),

where
vecB|ξ,λ,Σ,Y ,X ∼ N(β̃, Σβ̃),

Σβ̃ = [Σ−1 ⊗X ′X + Σ−1β ]−1 , β̃ = vecB̃ = Σβ̃[vec(X ′Y Σ−1) + Σ−1β µ] (Zellner 1971), and

p (ξ,λ,Σ|Y ,X) = c× p(ξ,λ)× |Σβ|−1/2|Σ|−(n+n0+p+1)/2|Σβ̃|
−1/2

× exp

{
−1

2

[
trΣ−1

(
n0S0 + nS̃

)
+
(
β̃ − µ

)′
Σ−1β

(
β̃ − µ

)]} (3)

where S̃ = (Y −XB̃)′(Y −XB̃)/n, c = 2−(n0+n+q)p/2π−p(n+q)/2Γ−1p (n0/2)|n0S0|n0/2, Γp(a) =

πp(p−1)/4
∏p

j=1 Γ [a+ (1− j)/2] is the multivariate gamma function. It is important to note
that it is in general not possible to integrate out Σ analytically in our model. This is a
consequence of using different shrinkage factors for the different responses and on the original,
additive and surface parts of the model (the prior covariance matrix of B does not have a
Kronecker structure). Only in the special case with a univariate response (p = 1) can we
integrate out Σ analytically, since Σ is then a scalar. To obtain a uniform treatment of the
models and their gradients, we have chosen to not integrate out Σ even for the case p = 1.
The next subsection proposes an MCMC algorithm for sampling from the joint posterior
distribution of all parameters.

3.2 The MCMC algorithm

Our approach is to sample from p (ξ,λ,Σ|Y ,X) using a three-block Gibbs sampling algo-
rithm with Metropolis-Hastings (MH) updating steps. Draws from p(B|ξ,λ,Σ,Y ,X) can
subsequently be obtained by direct simulation. The updating steps of the Gibbs sampling
algorithm are:
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1. Simulate Σ from p(Σ|ξ,λ,Y ,X).

2. Simulate ξ from p(ξ|λ,Σ,Y ,X).

3. Simulate λ from p(λ|ξ,Σ,Y ,X).

In the special case when p = 1

Σ|ξ,λ,Y ,X ∼ IW

(
n0S0 + nS̃ +

∑
i∈{o,a,s}

Λ
−1/2
i (B̃i −Mi)

′Pi(B̃i −Mi)Λ
−1/2
i , n0 + n

)
(4)

where Mi and B̃i are the prior and posterior mean of Bi, respectively. Actually, when
p = 1, Σ is a scalar and the IW density reduces to a scaled χ2 distribution. When p > 1,
p(Σ|ξ,λ,Y ,X) is no longer IW, but the distribution in (4) is an excellent approximation
and can be used as a very efficient MH proposal density.

The conditional posterior distributions for ξ and λ in Steps (2) and (3) above are highly
non-standard and we update these parameters using Metropolis-Hastings steps with a tai-
lored proposal, which we now describe for a general parameter vector θ with posterior
p(θ|Y ), which could be a conditional posterior in a Metropolis-within-Gibbs algorithm (e.g.
p(ξ|λ,Σ,Y ,X)). This method was originally proposed by Gamerman (1997) and later ex-
tended by Nott & Leonte (2004) and Villani et al. (2012). All of these three articles are
confined to a generalized linear model (GLM) or GLM-like context where the parameters
enter the likelihood function through a scalar-valued link function. A contribution of our
paper is to show that the algorithm can be extended to models without such a nice structure
and that it retains its efficiency even when the parameters are high-dimensional and enter
the model in a highly nonlinear way. The way the knot locations and the shrinkage parame-
ters are buried deep in the marginal posterior (see Equation 3.1 above) makes the necessary
gradients (see below) much more involved and numerically challenging (see Appendix A).

At any given MCMC iteration we use Newton’s method to iterate R steps from the current
point θc in the MCMC sampling towards the mode of p(θ|Y ), to obtain θ̂ and the Hessian
at θ̂. Note that θ̂ may not be the mode but is typically close to it already after a few Newton
iterations since the previously accepted θ is used as the initial value; setting R = 1, 2 or 3

is therefore usually sufficient. This makes the algorithm very fast. Having obtained good
approximations of the posterior mode and covariance matrix from the Newton iterations, the
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proposal θp is now drawn from the multivariate t-distribution with ν > 2 degrees of freedom:

θp|θc ∼ t

[
θ̂, −

(
∂2 ln p(θ|Y )

∂θ∂θ′

)−1∣∣∣∣∣
θ=θ̂

, ν

]
,

where the second argument of the density is the covariance matrix and θ̂ is the terminal
point of the R Newton steps. The Metropolis-Hastings acceptance probability is

a (θc → θp) = min

[
1,

p(Y |θp)p(θp)g(θc|θp)
p(Y |θc)p(θc)g(θp|θc)

]
.

The proposal density at the current point g(θc|θp) is a multivariate t-density with mode
θ̃ and covariance matrix equal to the negative inverse Hessian evaluated at θ̃, where θ̃ is
the point obtained by iterating R steps with the Newton algorithm, this time starting from
θp. The need to iterate backwards from θp is clearly important to fulfill the reversibility of
the Metropolis-Hastings algorithm. When the number of parameters in θ is large one can
successively apply the algorithm to smaller blocks of parameters in θ.

The tailored proposal distribution turns out to be hugely beneficial for MCMC efficiency,
but a naive implementation can easily make the gradient and Hessian evaluations an insur-
mountable bottleneck in the computations, and a source of numerical instability. We have
found the outer product of gradients approximation of the Hessian to work very well, so all we
need to implement efficiently are the gradient vector of p(ξ|λ,Σ,Y ,X) and p(λ|ξ,Σ,Y ,X).
The appendix gives compact analytical expression for these two gradient vectors, and shows
how to exploit sparsity to obtain fast and stable gradient evaluations. Our gradient evalua-
tions can easily be orders of magnitudes faster than state-of-the-art numerical derivatives, and
substantially more stable numerically. For example, already in a relatively small-dimensional
model with only four covariates, 20 surface knots and 4 additive knots, the analytical gradi-
ent for the knot parameters are more than 40 times faster compared to a numerical gradient
with tolerance of 10−3. Since the gradient evaluations accounts for 70-90% of total computing
time, this is clearly an important advantage.
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3.3 Model comparison

The number of knots is determined via the D-fold out-of-sample log predictive density score
(LPDS), defined as

1

D

∑D

d=1
ln p(Ỹd|Ỹ−d,X),

where Ỹd is an (nd× p)-dimensional matrix containing the nd observations in the dth testing
sample and Ỹ−d denotes the training observations used for estimation. If we assume that the
observations are independent conditional on θ, then

p(Ỹd|Ỹ−d,X) =

∫ ∏
i∈τd

p(yi|θ,xi)p(θ|Ỹ−d)dθ,

where τd is the index set for the observations in Ỹd, and the LPDS is easily computed by
averaging

∏
i∈τd p(yi|θ,xi) over the posterior draws from p(θ|Ỹ−d). This requires sampling

from each of the D posteriors p(θ|Ỹ−d) for d = 1, ..., D, but these MCMC runs can all be run
in isolation from each other and are therefore ideal for straightforward parallel computing
on widely available multi-core processors. The main advantage for choosing LPDS instead of
the marginal likelihood is that the LPDS is not nearly as sensitive to the choice of prior as
the marginal likelihood, see e.g. Kass (1993) and Richardson & Green (1997) for a general
discussion. The marginal likelihood can also lead to poor predictive inference when the true
data generating process is not included in the class of compared models, see e.g. Geweke &
Amisano (2011) for an illuminating perspective. The main disadvantage of using the LPDS
for selecting the number of knots is that, unlike the marginal likelihood and RJMCMC,
there is no rigorous way of including the uncertainty regarding the number of knots in the
final inferences. The dataset is systematically partitioned into five folds in our firm leverage
application.

4 Simulations

As discussed in the Introduction, the most commonly used approach for spline regression
modeling is to use a large number of fixed knots and to use shrinkage priors or Bayesian vari-
able selection to avoid overfitting (Denison et al. 2002). We compare the performance of the
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traditional fixed knots approach to our approach with freely estimated knot locations using
simulated data with different number of covariates and for varying degrees of nonlinearity in
the true surface. We use shrinkage priors with estimated shrinkage both for the fixed and
free knot models, but no variable selection. Models with univariate and multivariate response
variables are both investigated.

4.1 Simulation setup

We consider data generating processes (DGP) with both univariate (p = 1) and bivariate
(p = 2) responses, and datasets with qo = 10 regressors and two sample sizes, n = 200

and n = 1000. We first generate the covariate matrix Xo from a mixture of multivariate
normals with five components. The weight for the rth mixture component is ur/

∑5
l=1 ul,

where u1, ..., u5 are independent U(0, 1) variables. The mean of each component is a draw
from U(−1, 1) and the components’ variances are all 0.1. We randomly select five observa-
tions without replacement from Xo as the true surface knots ξs, and then create the basis
expanded design matrix X using the thin-plate radial basis surface spline, see Section 2.1.
The coefficients matrix B is generated by repeating the sequence {−1, 1}. The error term
E is from multivariate normal distribution with mean zero, variance 0.1 and covariance 0.1.
These settings guarantee a reasonable signal-to-noise ratio.

Following Wood et al. (2002), we measure the degrees of nonlinearity (DNL) in the DGP
by the distance between the true surface f(·) and the plane ĝ(·) fitted by ordinary least
squares without any knots in the model, i.e.

DNL =

√
n−1

∑n

i=1
[f(xi)− ĝ(xi)]2. (5)

A larger DNL indicates a DGP with stronger nonlinearity.
We generate 100 datasets and for each dataset we fit the fixed knots model with 5, 10,

15, 20, 25 and 50 surface knots, and also the free knots model with 5, 10, and 15 surface
knots. All fitted models have only linear and surface components. The knot locations are
determined by k -means clustering. We compare the models with respect to the mean squared
loss

Loss(qs) =
1

n∗

∑n∗

i=1
[f(xi)− f̃(xi)]

2 (6)
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where f(·) is the true surface and f̃(·) is the posterior mean surface of a given model with
qs surface knots. The Loss in (6) is evaluated over a new sample of n∗ covariate vectors, and
it therefore measures out-of-sample performance of the posterior mean surface. We will here
set n∗ = n. Note that the shrinkages and the covariance matrix of the error terms are also
estimated in both the fixed and free knots models.

4.2 Results

We present the results for p = 2 and n = 200. The results for p = 1 and n ∈ {200, 1000},
and p = 2 and n = 1000 are qualitatively similar and are available upon request. The
Supporting Information documents the results for p = 2 and n = 1000 for a few different
model configurations. Figure 1 displays boxplots for the log ratio of the mean squared loss
in (6). The columns of the figure represents varying degrees of nonlinearity in the generated
datasets according to the estimated DNL measure in equation (5). Each boxplot shows the
relative performance of a fixed knots model with a certain number of knots compared to
the free knots model with 5 (top row), 10 (middle row) and 15 (bottom row) surface knots,
respectively. The short summary of Figure 1 is that the free knots model outperforms the
fixed knots model in the large majority of the datasets. This is particularly true when the
data are strongly nonlinear. The performance of the fixed knots model improves somewhat
when we add more knots, but the improvement is not dramatic. Having more fixed knots
clearly improves the chances of having knots close to the true ones, but more knots also
increase the risk of overfitting.

The aggregate results in Figure 1 do not clearly show how strikingly different the fixed
and free knots models can perform on a given dataset. We will now show that models with
free rather than fixed knots are much more robust across different datasets. Figure 2 displays
the Euclidean distance of the multivariate out-of-sample predictive residuals

√
ε̃′ε̃ for a few

selected datasets as a function of the distance between the covariate vector and the sample
mean of the covariates. The normed residuals depicted in the leftmost column are from
datasets chosen with respect to the ranking of the out-of-sample performance of the fixed
knots model. For example, the upper left subplot shows the predictive residuals of both
the model with 15 fixed knots (vertical bars above the zero line) and the model with 5 free
knots (vertical bars below the zero line) on one of the datasets where the fixed knot models
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Figure 1: Boxplot of the log loss ratio comparing the performance of the fixed knots model
with the free knots model for the DGP with p = 2 and n = 200. The three columns of the
figure correspond to different degrees of nonlinearity of the realized datasets, as measured by
estimated DNL in (5).
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Table 1: Elapsed computing time (in minutes) for 5,000 iterations with a single dataset of
10 covariates.

n = 200 n = 1000
No. of free surface knots p = 1 p = 2 p = 1 p = 2

2 9 9 16 17
5 13 14 23 26

10 17 18 42 45
15 24 27 61 75

outperform the free knots model by largest margin (3rd best Loss in favor of fixed knots
model). It is seen from this subplot that even in this very favorably situation for the fixed
knots model, the free knots model is not generating much larger predictive residuals. Moving
down to the last row in the left hand column of Figure 2, we see the performance of the two
models when the fixed knots model performs very poorly (3rd worse Loss with respect to
the fixed knots model). On this particular dataset, the free knots model does well while the
fixed knots model is a complete disaster (note the different scales on the vertical axes of the
subplots). The column to the right in Figure 2 shows the same analysis, but this time the
datasets are chosen with respect to the ranking of the Loss of the free knots model. Overall,
Figure 2 clearly illustrates the superior robustness of models with free knots: the free knots
model never does much worse than the fixed knots model, but using fixed rather than free
knots can lead to a dramatically inferior predictive performance on individual datasets.

4.3 Computing time

The program is written in native R code and all the simulations were performed on a Linux
desktop with 2.8 GHz CPU and 4 GB RAM on single instance (without parallel computing).
Table 1 shows the computing time in minutes for a single dataset. In general the computing
time increases as the size of the design matrix increases, but it increases only marginally as
we go from p = 1 to p = 2.
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Ranking w.r.t. fixed knots model 

 3rd best

15

10

5

0

5

10

15

0.8 1.0 1.2 1.4 1.6

Fixed knots model (qs = 15)

Free knots model (qs = 5)

||
ε~
||
  
  
  
  
  
  
  
||

ε~
||

median

30

20

10

0

10

20

30

0.8 1.0 1.2 1.4 1.6

||
ε~
||
  
  
  
  
  
  
  
||

ε~
||

3rd worst

100

75

50

25

0

25

50

75

100

0.8 1.0 1.2 1.4 1.6

||
ε~
||
  
  
  
  
  
  
  
||

ε~
||

||x − xo||

Ranking w.r.t. free knots model 
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Figure 2: Plotting the norm of the predictive multivariate residuals as a function of the
distance between the covariate vector and its sample mean. The results are for the DGP
with p = 2 and n = 200. The lines in each subplot are the normed residuals from the model
with 15 fixed surface knots (vertical bars above the zero line), and the model with 5 free
knots (vertical bars below the zero line). The column to the left shows the results for three
datasets chosen when performance is ranked according to the fixed knots model, and the right
column displays the results for three datasets chosen when performance is ranked according
to the free knots model.
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5 Concluding remarks

We have presented a general Bayesian approach for fitting a flexible surface model for a con-
tinuous multivariate response using a radial basis spline with freely estimated knot locations.
Our approach uses shrinkage priors to avoid overfitting. The locations of the knots and the
shrinkage parameters are treated as unknown parameters and we propose a highly efficient
MCMC algorithm for these parameters with the coefficients of the multivariate spline in-
tegrated out analytically. An important feature of our algorithm is that all knot locations
are sampled jointly using a Metropolis-Hastings proposal density tailored to the conditional
posterior, rather than the one-knot-at-a-time random walk proposals used in previous litera-
ture. The same applies to the block of shrinkage parameters. Both a simulation study and a
real application on firm leverage data show that models with free knots have a better out-of-
sample predictive performance than models with fixed knots. Moreover, the free knots model
is also more robust in the sense that it performs consistently well across different datasets.
We also found that models that mix surface and additive spline basis functions in the same
model perform better than models with only one of the two basis types.

Our approach can be directly used with other splines basis functions, other priors, and it is
at least in principle straightforward to augment the model with Bayesian variable selection.
Also, the assumption of Gaussian error distribution could be easily removed by using a
Dirichlet process mixture (DPM) prior. We would still be able to integrate out the regression
coefficients if we assume a Gaussian base measure in the DPM, see Leslie et al. (2007) for
details in the univariate case.
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A Details of the MCMC algorithm

In this section we briefly address the MCMC details and related computational issues. For
details on matrix manipulations and derivatives, see e.g. Lütkepohl (1996). Our MCMC
algorithm in Section 3.2 only requires the gradient of the conditional posteriors w.r.t. each
parameter. Since users can always use their own prior on the knots and shrinkages, we will
not document the gradient of any particular prior. In particular for the normal prior, one
can directly find the results in e.g. Mardia et al. (1979). We now present the full gradients
for the knot locations and the shrinkage parameters.
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