Highly-scalable distributed modelling and forecasting with dependent data

Feng Li S@f3ngli

School of Statistics and Mathematics Central University of Finance and Economics

Outline

1 Distributed forecasting with ultra-long time series

2 Least-square approximation for a distributed system

3 The distributed Bayesian VARs

Forecasting with the electricity demand data

Distributed forecasting with ultra-long time series → Motivation

- Ultra-long time series are increasingly accumulated in many cases,
 - hourly electricity demands
 - daily maximum temperatures
 - streaming data generated in real-time
- Forecasting ultra-long time series is challenging.
 - Time series are distributed stored with distributed file systems.
 - Training Bayesian models is time-consuming, and model updating is a demand for streaming time series.
 - Ultra-long time series require ultra-long forecasts.
 - Assuming the DGP remains invariant (e.g. stationary assumptions), over ultra-long time interval is unrealistic and requires efficient treatments.
- Few, *if not no*, Bayesian time models have even been applied to the industrial standard distributed computing systems.
 - Forecasters could not take advantage of probabilistic forecasting,
 - making it difficult for inventory planning in business.

Distributed forecasting with ultra-long time series → Electricity load data (Hong et al. 2019)

- The electricity load data set consists of 10 time series of hourly data, ranging from 1 March 2003 to 30 April 2017, spanning 124, 171 time points.
- The forecasting horizon is at least one month ahead to allow for earlier management plans.

Feng Li (https://feng.li/

Distributed forecasting with ultra-long time series → The forecasting framework on a distributed system

Least-square approximation for a distributed system

- Let $\mathcal{L}(\theta; Z)$ be a plausible twice-differentiable loss function. Define the global loss function as $\mathcal{L}(\theta) = N^{-1} \sum_{i=1}^{N} \mathcal{L}(\theta; Z_i)$, whose global minimizer is $\tilde{\theta} = \arg \min \mathcal{L}(\theta)$ and the true value is θ_0 .
- Decomposing and approximating the global loss function using Taylor's expansion techniques as follows:

$$\mathcal{L}(\theta) \approx N^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{S}_k} (\theta - \widetilde{\theta}_k)^\top \ddot{\mathcal{L}}(\widetilde{\theta}_k; Z_i) (\theta - \widetilde{\theta}_k) + C$$

• The quadratic form should be a good local approximation of the global loss function (Wang & Leng 2007, JASA). This leads to the following least squares objective function for a distributed model (DLSA) (Zhu, Li & Wang 2021, JCGS),

$$\widetilde{\mathcal{L}}(\theta) \stackrel{\text{def}}{=} \sum_{k} (\theta - \widetilde{\theta}_{k})^{\top} \alpha_{k} \widetilde{\Sigma}_{k}^{-1} (\theta - \widetilde{\theta}_{k})$$

The distributed Bayesian VARs I

• We consider a general VAR model written as

$$\boldsymbol{Y} = \boldsymbol{Y}_{-1}\boldsymbol{A}_1 + \boldsymbol{Y}_{-2}\boldsymbol{A}_2 + ... + \boldsymbol{Y}_{-p}\boldsymbol{A}_p + \boldsymbol{Z}\boldsymbol{C} + \boldsymbol{U} = \boldsymbol{X}\boldsymbol{\Gamma} + \boldsymbol{U}$$

where \mathbf{Y} is a $T \times n$ matrix, $\mathbf{X} = (\mathbf{Y}_{-1}, \mathbf{Y}_{-2}, ..., \mathbf{Y}_{-p}, \mathbf{Z})$ is a $T \times m$ matrix to represent the lagged terms of \mathbf{Y} and other explanatory variables, $\Gamma = (\mathbf{A}'_1, \mathbf{A}'_2, ..., \mathbf{A}'_p, \mathbf{C}')'$ is the $m \times n$ coefficients matrix, and $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_T)'$ while $\mathbf{u}_t \sim N(\mathbf{0}, \mathbf{\Psi})$ is the normally distributed errors.

- To keep things simple, we take an uniform prior distribution for Γ and a Jeffreys' prior for $\Psi,$

$$p(\mathbf{\Gamma}, \mathbf{\Psi}) \propto |\mathbf{\Psi}|^{-(n+1)/2}.$$
 (1)

• Then, we know that Γ follows a multivariate normal distribution conditional on Ψ , and Ψ follows an inverse Wishart distribution.

The distributed Bayesian VARs II

• The marginal posterior for Γ is a matricvariate t-distribution

 $\Gamma | \mathbf{Y}_T \sim MVT_{mn}(\widetilde{\boldsymbol{\gamma}}, \mathbf{X}'\mathbf{X}, \mathbf{S}, T-m)$

 $\text{for }\boldsymbol{\gamma}=\operatorname{vec}\boldsymbol{\Gamma}\text{ and }\widetilde{\boldsymbol{\gamma}}=\operatorname{vec}\widetilde{\boldsymbol{\Gamma}}=\operatorname{vec}\left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}\right).$

Thus,

$$E(\mathbf{\Gamma}) = \widetilde{\boldsymbol{\gamma}}, \quad V(\operatorname{vec} \mathbf{\Gamma}) = \frac{1}{T - m - n - 1} \boldsymbol{S} \otimes (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$

• In this way, we could directly work out the posterior expectation and covariance matrix of coefficients for subdatas, and then the master could calculate global estimator $\tilde{\Gamma}$ using the DLSA (Zhu, Li & Wang 2021, JCGS).

$$\operatorname{vec} \widetilde{\mathbf{\Gamma}} = \left[\sum_{k} \alpha_{k} V_{k}^{-1} \left(\operatorname{vec} \mathbf{\Gamma}\right)\right]^{-1} \left[\sum_{k} \alpha_{k} V_{k}^{-1} \left(\operatorname{vec} \mathbf{\Gamma}\right) \widetilde{\boldsymbol{\gamma}}_{k}\right]$$

The distributed Bayesian VARs → Distributed Bayesian updating with DLSA

- Model updating for streaming data is simple with Bayesian scheme
 - Yesterday's posterior is today's prior.
- With the DLSA method, if \widetilde{V}_K^{-1} represents $\sum_k \alpha_K \widetilde{\Sigma}_K^{-1}$ and the initial value is set as $\widetilde{V}_1^{-1} = \alpha_1 \widetilde{\Sigma}_1^{-1}$ and $\widetilde{\theta}_1 = \widetilde{\theta}_1$, then we can get

$$\widetilde{V}_{K+1}^{-1} = \widetilde{V}_{K}^{-1} + \alpha_{k+1} \widetilde{\Sigma}_{k+1}^{-1} \widetilde{\theta}_{K+1} = \widetilde{V}_{K+1} \left(\widetilde{V}_{K}^{-1} \widetilde{\theta}_{K} + \alpha_{k+1} \widetilde{\Sigma}_{k+1}^{-1} \widetilde{\theta}_{k+1} \right)$$

• Therefore, we can constantly update the expected estimate $\tilde{\theta}_{K+1}$ and \tilde{V}_{K+1}^{-1} based on the initial value and the parameters $\alpha_{k+1}\tilde{\Sigma}_{k+1}^{-1}$ and $\tilde{\theta}_{k+1}$ calculated based on the new data.

Application to the electricity demand data

Variable name	Description
Date	date in MM/DD/YYYY format
Hour	hour of the observation, in hour ending and 24-hour convention
DA_DEMD	day-ahead demand consists of fixed and price sensitive demand bids plus decrement bids $\&$ increment offers
DEMAND	$\label{eq:non-PTF} \begin{array}{l} non-PTF \ demand = [non-dispatchable + unmetered + station \ service] \\ as \ determined \ by \ metering \end{array}$
DA_LMP	day-ahead locational marginal price
DA_EC	day-ahead energy component
RT_LMP	real-time locational marginal price
RT_EC	real-time energy component
DryBulb	dry bulb temperature in °F
DewPnt	dew point temperature in °F
SYSLoad	System load = [generation - pumping load + net interchange]
	as determined by metering
RegCP	Regulation Clearing Price

* Demand & load are in MWh. All prices are in \$/MWh.

Distributed forecasting with ultra-long time series → Electricity load data

Distributed forecasting with ultra-long time series \rightarrow Need for speed!

Max orders	Method	MASE	MSIS	Execution time
				(mins)
(5, 2, 5)	ARIMA	1.430	19.733	4.596
	DARIMA	1.297	15.078	1.219
(5, 2, 7)	ARIMA	1.410	18.695	14.189
	DARIMA	1.297	15.078	1.211
(6, 2, 7)	ARIMA	1.410	18.695	15.081
	DARIMA	1.298	15.108	1.326
(6, 3, 7)	ARIMA	1.413	15.444	21.072
	DARIMA	1.324	12.590	1.709
(6, 3, 10)	ARIMA	1.413	15.654	76.272
	DARIMA	1.324	12.590	1.769
(7, 3, 10)	ARIMA	1.413	15.654	83.077
	DARIMA	1.327	12.561	1.829
(7, 4, 10)	ARIMA	1.409	13.667	111.292
	DARIMA	1.338	12.079	2.267
(8, 4, 10)	ARIMA	1.409	13.667	117.875
	DARIMA	1.335	12.076	2.224

Feng Li (https://feng.li/)

Distributed forecasting with ultra-long time series

Feng Li (https://feng.li/

Time series forecasting at scale

Applications

→ Forecasting Results of GEFCom2017 Data with VARs

	Distributed	tributed FALSE		TRUE	JE	
	Nodes	1	5	10	50	
	RMSE	0.129	0.124	0.123	0.125	
h=24	MASE	0.419	0.406	0.400	0.413	
	LPS	32.223	32.910	33.152	32.372	
h=48	RMSE	0.119	0.116	0.116	0.118	
	MASE	0.371	0.366	0.363	0.374	
	LPS	61.367	62.127	62.284	60.912	
h=168	RMSE	0.127	0.125	0.125	0.125	
	MASE	0.402	0.398	0.393	0.400	
	LPS	187.877	189.688	190.311	189.660	
h=720	RMSE	0.144	0.144	0.144	0.143	
	MASE	0.451	0.453	0.449	0.451	
	LPS	580.820	582.794	583.121	587.239	

Discussions

- Distributed forecasting not only speeds up the computation but also improves forecasting performance (Wang et al. 2020, arXiv).
- Distributed systems like Apache Spark are the *de facto* standard in the data science industry, but it is costly to run time-consuming programs.
- Scalable Bayesian forecasting models empower rapid business planning.
- Theoretical details are available in
 - DLSA Zhu, Li & Wang (2021, JCGS),
 - DQR Pan, Ren, Guo, Li, Guodong & Wang (2021, JBES),
 - DVAR Ma, Li, Karlsson & Kang (2021, soon on arXiv),
 - DARIMA Wang, Kang, Hyndman & Li (2020, arXiv).
- Try our software https://github.com/feng-li/dstats/ implemented for the Spark distributed computing platform.

Thank you!

https://kllab.org feng.li@cufe.edu.cn

Feng Li (https://feng.li/

References

- Hong, T., Xie, J. & Black, J. (2019), 'Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting', *International Journal of Forecasting* **35**(4), 1389–1399.
- Ma, X., Li, F., Karlsson, S. & Kang, Y. (2021), 'Distributed forecasting with large Bayesian VAR models', *Working Paper*.
- Pan, R., Ren, T., Guo, B., Li, F., Guodong & Wang, H. (2021), 'A note on distributed quantile regression by pilot sampling and one-step updating', *Journal of Business and Economic Statistics* **Accepted**.
- Wang, H. & Leng, C. (2007), 'Unified lasso estimation by least squares approximation', *Journal of the American Statistical Association* **102**(479), 1039–1048.
- Wang, X., Kang, Y., Hyndman, R. J. & Li, F. (2020), 'Distributed ARIMA models for ultra-long time series', arXiv preprint arXiv:2007.09577.
- Zhu, X., Li, F. & Wang, H. (2021), 'Least squares approximation for a distributed system', *Journal of Computational and Graphical Statistics* **Accepted**.