SOLUTIONS TO EXERCISE 1

FENG LI
SEPTEMBER 10, 2013

2.7

The term "linear" regression always means a regression that is linear in the parameters(details in p. 42).
a. This is a linear regression model. We will see this more clearly if we take a nature $\log (\log$ to the base $e)$, we have

$$
\ln \left(Y_{i}\right)=\ln \left(e^{\beta_{1}+\beta_{2} X_{1}+u_{i}}\right)=\beta_{1}+\beta_{2} X_{i}+u_{i}
$$

b. We make a little transformation

$$
\frac{1-Y_{i}}{Y_{i}}=e^{\beta_{1}+\beta_{2} X_{i}+u_{i}}
$$

and take a nature log, we get the linear model

$$
\log \left(\frac{1-Y_{i}}{Y_{i}}\right)=\beta_{1}+\beta_{2} X_{i}+u_{i}
$$

The two-step is also called logit transformation.
c. This is a linear transformation since to the $\operatorname{parameters}\left(\beta_{1}\right.$ and $\left.\beta_{2}\right)$ it is a linear form.
d. This is a nonlinear regression model.
e. This is also nonlinear regression model because β_{2} is raised to the third power.

2.13

It is a sample regression line because it is based on a sample of 46 years of observations. The scatter points around the regression line are the actual data points. The difference between the actual consumption expenditure and that estimated from the regression line represents the (sample) residual. Besides GDP, factors such as wealth, interest rate, etc. might also affect consumption expenditure.

3.1

Consider the linear model $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$,

[^0]a. given $E\left(u_{i} \mid X_{i}\right)=0$, we have
\[

$$
\begin{aligned}
E\left(Y_{i} \mid X_{i}\right) & =E\left(\left(\beta_{1}+\beta_{2} X_{i}+u_{i}\right) \mid X_{i}\right) \\
& =E\left(\beta_{1} \mid X_{i}\right)+E\left(\beta_{2} X_{i} \mid X_{i}\right)+E\left(u_{i} \mid X_{i}\right) \\
& =E\left(\beta_{1}\right)+E\left(\beta_{2} X_{i}\right)+E\left(u_{i} \mid X_{i}\right) \\
& =\beta_{1}+\beta_{2} X_{i}
\end{aligned}
$$
\]

This is because β_{1} and β_{2} are constants and X_{i} is non-stochastic.
b. given $\operatorname{cov}\left(u_{i}, u_{j}\right)=0$ for all $i \neq j$, which means u_{i}, u_{j} are uncorrelated, we have

$$
\begin{array}{rlr}
\operatorname{cov}\left(Y_{i}, Y_{j}\right) & =E\left(\left(Y_{i}-E\left(Y_{i}\right)\right)\left(Y_{j}-E\left(Y_{j}\right)\right)\right) & \\
& =E\left(\left(Y_{i}-\left(\beta_{1}+\beta_{2} X_{i}\right)\right)\left(Y_{j}-\left(\beta_{1}+\beta_{2} X_{j}\right)\right)\right) & \text { by (a) } \\
& =E\left(u_{i} u_{j}\right) & \\
& =E\left(u_{i}\right) E\left(u_{i}\right) & u_{i}, u_{j} \text { uncorrelated } \\
& =0 & E\left(u_{i}\right)=0
\end{array}
$$

c. by assumptions we can get that

$$
\begin{array}{rlr}
\operatorname{var}\left(Y_{i} \mid X_{i}\right) & =E\left(\left(Y_{i}-E\left(Y_{i}\right)\right)^{2}\right) & \\
& =E\left(u_{i}^{2}\right)=\operatorname{var}\left(u_{i}\right)+\left(E u_{i}\right)^{2} & \\
& =\sigma^{2} & \operatorname{var}\left(u_{i}\right)=\sigma^{2} \text { and } E\left(u_{i}\right)=0
\end{array}
$$

3.6

By E.q. (3.1.6), for the model $Y_{i}=\alpha+\beta_{y x} X_{i}+u_{i}$, we have

$$
\hat{\beta}_{y x}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

where $x_{i}=X_{i}-\bar{X}, y_{i}=Y_{i}-\bar{Y}$ and for the model $X_{i}=\alpha+\beta_{x y} Y_{i}+\epsilon_{i}$, we have

$$
\hat{\beta}_{x y}=\frac{\sum x_{i} y_{i}}{\sum y_{i}^{2}}
$$

Multiplying the two, we obtain the expression that

$$
\hat{\beta}_{y x} \hat{\beta}_{x y}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \frac{\sum x_{i} y_{i}}{\sum y_{i}^{2}}=\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2} \sum y_{i}^{2}}
$$

which is r^{2} in E.q. (3.5.8)

3.7

Even though $\hat{\beta}_{y x} \hat{\beta}_{x y}=1$. This does not mean $\hat{\beta}_{y x}=\hat{\beta}_{x y}=1$. It may still matter if Y is regressed on X or X on Y.

The residuals and fitted values of Y will not change. Consider the regression models $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$ and $Y_{i}=\alpha_{1}+\alpha_{2} Z_{i}+\epsilon_{i}$, where $Z=2 X$ From E.q. (3.1.6), we know that for the slopes

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \\
& \hat{\alpha}_{2}=\frac{\sum z_{i} y_{i}}{\sum z_{i}^{2}}=\frac{\sum\left(2 x_{i}\right) y_{i}}{\sum\left(2 x_{i}\right)^{2}}=\frac{\sum x_{i} y_{i}}{2 \sum x_{i}^{2}}=\frac{1}{2} \hat{\beta}_{2}
\end{aligned}
$$

But the intercepts are unchanged, by E.q. (3.1.7)

$$
\begin{aligned}
& \hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X} \\
& \hat{\alpha}_{1}=\bar{Y}-\hat{\alpha}_{2} \bar{Z}=\bar{Y}-\frac{1}{2} \hat{\beta}_{2}(2 \bar{X}), \quad \bar{Z}=2 \bar{X}
\end{aligned}
$$

NOTE: be careful the notation of the lower case x_{i} and upper case X_{i}
3.16
a. FALSE. The covariance can be any value depending on the unit of measurement (e.g A and B). By definition the covariance is

$$
\operatorname{cov}(A, B)=E(A-E(A))(B-E(B))=E(A B)-E(A) E(B)
$$

while the correlation is restricted to $[-1,1]$ and

$$
\operatorname{cor}(A, B)=\frac{\operatorname{cov}(A, B)}{\sqrt{\operatorname{var}(A) \operatorname{var}(B)}}=\frac{E(A B)-E(A) E(B)}{\sqrt{\left(E\left(A^{2}\right)-(E(A))^{2}\right)\left(E\left(B^{2}\right)-(E(B))^{2}\right)}}
$$

b. FALSE. Look at the Figure 3.10 h (p. 78) The correlation coefficients is a measure of linear relationship between two variable. Given nonlinear relationship $Y=X^{2}$, we can calculate the correlation is 0 but not means Y and X has no relationship.
c. TRUE. Consider a linear regression model $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$, we obtain the estimator $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ where $\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}$. Now let's regress Y_{i} on \hat{Y}_{i}. Say we want to make a linear regression on the model

$$
Y_{i}=\alpha_{1}+\alpha_{2} \hat{Y}_{i}+\varepsilon_{i}
$$

To get the estimator $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$, just do some basic algebra as below

$$
\begin{array}{rlr}
\hat{\alpha}_{2} & =\frac{\sum y_{i} \hat{y}_{i}}{\sum \hat{y}_{i}^{2}} \quad \text { by Eq. 3.1.6, p. } 58 \\
& =\frac{\sum y_{i}\left(\hat{\beta}_{2} x_{i}\right)}{\sum\left(\hat{\beta}_{2} x_{i}\right)^{2}}=\frac{\hat{\beta}_{2} \sum x_{i} y_{i}}{\hat{\beta}_{2}^{2} \sum x_{i}^{2}} & \text { why? } \\
& =\frac{\sum x_{i} y_{i}}{\hat{\beta}_{2} \sum x_{i}^{2}}=1 &
\end{array}
$$

and by Eq. 3.1.10 (p. 64)

$$
\hat{\alpha}_{1}=\bar{Y}-\hat{\alpha_{2}} \overline{\hat{Y}}=\bar{Y}-\overline{\hat{Y}}=0
$$

3.19
a. The slope value of 2.250 suggests that over the period 1985-2005, for every unit increase in the ratio of the US to Canadian CPI, on average, the Canadian to US dollar exchange rate ratio increased by about 2.250 units. That is, as the US dollar strengthened against the Basic Econometrics, Gujarati and Porter 24 Canadian dollar, one could get more Canadian dollars for each US dollar. Literally interpreted, the intercept value of -0.912 means that if the relative price ratio were zero, a US dollar would exchange for - 0.912 Canadian dollars (would lose money). Of course, this interpretation is not economically meaningful. With a fairly low to moderate r^{2} of 0.440 , we should realize that there is a lot of variability in this result.
b. The positive value of the slope coefficient makes economic sense because if U.S. prices go up faster than Canadian prices, domestic consumers will switch to Canadian goods because they can buy more, thus increasing the demand for GM, which will lead to appreciation of the German mark. This is the essence of the theory of purchasing power parity (PPP), or the law of one price.
c. In this case the slope coefficient is expected to be negative, for the higher the Canadian CPI relative to the U.S. CPI, the lower the relative inflation rate in Canada which will lead to depreciation of the U.S. dollar. Again, this is in the spirit of the PPP.

[^0]: School of Statistics and Mathematics, Central University of Finance and Economics. E-mail: m@feng.li.

