L9: Autocorrelation

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

Introduction

- In the classic regression model we assume $cov(u_i, u_j | x_i, x_k) = E(u_i, u_j) = 0$
- What if we break the assumption? Look at these patterns

Positive and negative autocorrelation

(a)

(a) Positive and (b) negative autocorrelation.

What happens to OLS/GLS when autocorrelation exists?

- Consider a simple model $Y_t=\beta_1+\beta_2X_t+u_t$ where the error terms is autocorrelated as $u_t=\rho u_{t-1}+\varepsilon_t$
- The OLS estimator will not change (still linear unbiased)
- But is not efficient since

$$\operatorname{Var}\left(\hat{\beta}_{2}\right) = \frac{\sigma^{2}}{\sum x_{t}^{2}} \left(1 + 2\rho \frac{\sum x_{t} x_{t-1}}{\sum x_{t}^{2}} + 2\rho^{2} \frac{\sum x_{t} x_{t-2}}{\sum x_{t}^{2}} + \ldots\right) > \frac{\sigma^{2}}{\sum x_{t}^{2}}$$

where $\sigma^2 / \sum x_t^2$ is the variance of $\hat{\beta}_2$ when no autocorrelation presents.

The GLS estimators under autocorrelation is BLUE.

Consequences of using OLS when autocorrelation

• The confidence intervals are likely wider than those from GLS.

- The usual t and F tests are not valid.
- \bullet The residual variance $\hat{\sigma}^2$ likely to underestimate the true σ^2
- Likely to overestimate R²

Detection of autocorrelation → The runs test (nonparametric test)

• step 1: Plot the residuals as follows

- step 2: Count the runs as: (- -)(+ + +)(-)(+)(- -)• step 3: N_1 = number of "+" residuals = 4, N_2 = number of "-" residuals = 6, $N = N_1 + N_2 = 10$, R = number of runs = 5
- step 3: The number of runs is normally distributed

$$R \sim N\left(\frac{2N_1N_2}{N} + 1, \frac{2N_1N_2(2N_1N_2 - N)}{N^2(N+1)}\right)$$

Detection of autocorrelation → The runs test – example

- Carry out the runs test with the residuals give in the previous slides.
- What critical value are you look for?
- Why this test is called nonparametric test?

Detection of autocorrelation \rightarrow **Durbin–Watson** *d* test (1)

• The Durbin–Watson d statistic

$$d = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2}$$

- Assumptions underlying the *d* statistic
 - * The regression model includes the intercept. If you model does not have the intercept, rerun the model include intercept to obtain $\hat{u}_i.$
 - It can only determine first-order autoregressive scheme.
 - The error term are assumed normally distributed.
 - The explanatory variables do not contains lagged values (we will talk about it more in the time series part).

Detection of autocorrelation \rightarrow **Durbin–Watson** *d* test (2)

*H*₀: No positive autocorrelation

 H_0^* : No negative autocorrelation

Durbin-Watson d statistic.

Detection of autocorrelation \rightarrow **Durbin–Watson** *d* test (3)

• Approximation of *d* statistic

$$d\approx 2(1-\hat{\rho})$$

where $\hat{\rho} = \frac{\sum \hat{u}_t \hat{u}_{t-1}}{\sum \hat{u}_t^2}$ is the sample first-order coefficient of autocorrelation of \hat{u}_t , i.e.,

$$\hat{u}_t = \hat{\rho} u_{t-1}.$$

- When $\rho \rightarrow 1$, positive autocorrelation;
- When $\rho \rightarrow -1$, negative autocorrelation;
- When $\rho \rightarrow 0$, no autocorrelation.

Detection of autocorrelation → Durbin–Watson *d* test – example

- Given a sample of 100 observations and 5 explanatory variables, what can you say about autocorrelation if d = 1.2?
- Can handle without looking at the table?

The comparison between Durbin–Watson test and runs test

- Runs test does not require and probability distribution of the error term.
- Warning: The *d* test is not valid if u_i is not iid.
- When n is large,

$$\sqrt{n}(1-d/2) \sim N(0,1)$$

- We can use the normality approximation when n is large regardless of iid.
- Durbin–Watson statistic requires the covariates be non stochastic which is difficult to meet in econometrics.
- In this case, try the test on next slides.

Detection of autocorrelation → The Breusch–Godfrey test (Lagrange Multiplier test)

- \bullet Consider the model $Y_t = \beta_1 + \beta_2 X_t + u_t$,
- Assume $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + ... + \rho_p u_{t-p} + \varepsilon_t$
- $H_0: \rho_1 = \rho_2 = ... = \rho_p = 0$, i.e. no autocorrelation.
- Run the auxiliary model

$$\hat{u}_t = \alpha_1 + \alpha_2 X_t + \rho_1 \hat{u}_{t-1} + \rho_2 \hat{u}_{t-2} + ... + \rho_p \hat{u}_{t-p} + \varepsilon_t$$

and obtain R².

• When n large,

$$(n-p)R^2 \sim \chi^2(p).$$

- Reject H_0 if $\chi^2_{obs}(p) > \chi^2_{crit}(p)$.
- Question: Have you seen similar another test that has the similar way of constructions as this one?

Model misspecification and pure autocorrelation

- Some variables that were supposed to be in the model but not.
- This is the case of *excluding variable*, which is a type of model specification bias (will talk more in next chapter).
- This may also show patterns in the residuals plot.
- Try to find out if it is pure autocorrelation or misspecification.
- See example on p. 441.

Use GLS to correct pure autocorrelation

- \bullet Assume you have model $Y_t = \beta_1 + \beta_2 X_t + u_t$ and
- there is pure autocorrelation $u_t = \rho u_{t-1} + \varepsilon_t$.
- When ρ known
 - \blacktriangleright From the model we also have $Y_{t-1}=\beta_1+\beta_2 X_{t-1}+u_{t-1}$
 - Then $Y_t \rho Y_{t-1} = \beta_1(1-\rho) + \beta_2(X_t \rho X_{t-1}) + (u_t \rho u_{t-1})$. Why?
 - \blacktriangleright The above model can be written as $Y_t^*=\beta_1^*+\beta_2^*X_t^*+\varepsilon_t$ which removes autocorrelation. Why?
- When ρ not known
 - One may run the model $Y_t Y_{t-1} = \beta_2(X_t X_{t-1}) + (u_t u_{t-1})$
 - We will talk more at second part of this course.

Take home questions

- 12.2, 12.11, 12.12
- How do you implement GLS in matrix form [Hint: think about the Ω matrix]?