L8: Heteroscedasticity

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

What is so-called heteroscedasticity

• In a linear regression model, we assume the error term has a normal distribution with mean zero and variance of σ^2 , i.e.

$$Var(u_i) = \sigma^2$$

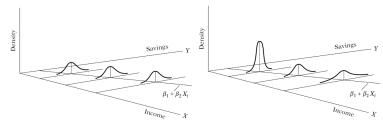
which is called **homoscedasticity**.

• But when the error term does not have constant variance, i.e.

$$Var(u_i) = \sigma_i^2$$

we call it heteroscedasticity.

• See the differences between the two pictures for the model $Saving = \alpha + \beta Income + u_i$



Homoscedastic disturbances.

Heteroscedastic disturbances.

An OLS example

- Recall the model $Y_i = \alpha_1 + \alpha_2 X_i + u_i$.
- \bullet If the error term u_i is homoscedastic with variance $\sigma^2,$ we know we have BLUE estimators and

$$\hat{\alpha}_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$
, $Var(\hat{\alpha}_2) = \frac{\sigma^2}{\sum x_i^2}$.

• If the error term u_i is homoscedastic with variance σ_i^2 , we have

$$\hat{\alpha}_2 = \frac{\sum x_i y_i}{\sum x_i^2}, \ \text{Var}(\hat{\alpha}_2) = \frac{\sum x_i^2 \sigma_i^2}{(\sum x_i^2)^2} \neq \frac{\sigma^2}{\sum x_i^2}.$$

why? see Appendix 11A.1.

- $\hat{\alpha}_2$ is still linear and unbiased, why?
- But it is not "best" anymore, i.e. will not grant the minimum variance.

Use GLS to take heteroscedasticity into account I

- The OLS method treats every observation equally and does not take heteroscedasticity into account.
- The generalized least squares (GLS) will.
 - Consider the heteroscedasticity model

 $Y_i = \beta_1 + \beta_2 X_{1i} + u_i, \text{ where } Var(u_i) = \sigma_i^2$

• If we transform the model by dividing $1/\sqrt{w_i}$ where $w_i = 1/\sigma_i^2$ at both sides (assume σ_i is known),

$$\frac{Y_{i}}{\sigma_{i}} = \beta_{1} \frac{1}{\sigma_{i}} + \beta_{2} \frac{X_{i}}{\sigma_{i}} + \frac{u_{i}}{\sigma_{i}}$$

which can be rewritten as

$$Y_i^*=\beta_1X_{0i}^*+\beta_2X_{1i}^*+u_i^*\text{,}$$

and $u_i^* = u_i / \sigma_i$ is the new error term for the new model.

- + $Var(u_i/\sigma_i) = 1$ is now a constant. why?
- We call $\hat{\beta}_1^*$ $\hat{\beta}_2^*$ as GLS estimators

$$\hat{Y}^{*}_{i} = \hat{\beta}^{*}_{1}X^{*}_{0i} + \hat{\beta}^{*}_{2}X^{*}_{1i}$$
,

Use GLS to take heteroscedasticity into account II

• To obtain GLS estimators, we minimize

$$\sum (\hat{u}_{i}^{*})^{2} = \sum (Y_{i}^{*} - \hat{\beta}_{1}^{*}X_{0i}^{*} - \hat{\beta}_{2}^{*}X_{1i}^{*})^{2} = \sum w_{i}(Y_{i} - \hat{\beta}_{1}^{*}X_{0i} - \hat{\beta}_{2}^{*}X_{1i})^{2}$$

which is done by the usual way we have done in OLS.

• The GLS estimator of β_2^* is

$$\hat{\beta}_{2}^{*} = \frac{\sum w_{i} \sum w_{i} X_{i} Y_{i} - \sum w_{i} X_{i} \sum w_{i} Y_{i}}{\sum w_{i} \sum w_{i} X_{i}^{2} - (\sum w_{i} X_{i})^{2}}$$

and the variance is

$$\operatorname{Var}\left(\hat{\beta}_{2}^{*}\right) = \frac{\sum w_{i}}{\sum w_{i} \sum w_{i} X_{i}^{2} - \left(\sum w_{i} X_{i}\right)^{2}}$$

where $w_i = 1/\sigma_i^2$.

• When $w_i=w=1/\sigma^2,$ the GLS estimator will reduce to the OLS estimator. Verify this!

•
$$\hat{\beta}_1^* = \bar{Y}^* - \hat{\beta}_2^* \bar{X}^*$$
 where $\bar{Y}^* = (\sum w_i Y_i) / \sum (w_i)$, $\bar{X}^* = (\sum w_i X_i) / \sum (w_i)$.

Use GLS to take heteroscedasticity into account III

- At this particular setting $w_i = 1/\sigma_i^2$, we call this is weighted least squares (WLS) which is a special case of GLS.
- $\hat{\beta}_2^*$ is unbiased and $Var(\hat{\beta}_2^*) < Var(\hat{\beta}_2)$.
- It can be shown that

$$\hat{\beta}_2^* = \frac{\sum w_i x_i^* y_i^*}{\sum w_i (x_i^*)^2}$$

and

$$\operatorname{Var}\left(\hat{\beta}_{2}^{*}\right) = \frac{1}{\sum w_{i}(x_{i}^{*})^{2}}$$

where

$$x_i^*=X_i-\bar{X}^*\text{, }y_i^*=Y_i-\bar{Y}^*$$

• See Exercise 11.5.

GLS in matrix form I

• Let Y given X is a linear function of X, whereas the conditional variance of the error term given X is a **known** matrix Ω

 $Y = X\beta + \epsilon$, $E[\epsilon|X] = 0$, $Var[\epsilon|X] = \Omega$.

• Generalized least squares method estimates β by minimizing the squared Mahalanobis length of this residual vector:

$$\hat{\boldsymbol{\beta}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \left(\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \right)' \boldsymbol{\Omega}^{-1} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}),$$

• The estimator has an explicit formula:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}' \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{\Omega}^{-1} \boldsymbol{Y}.$$

 The GLS estimator is unbiased, consistent, efficient, and asymptotically normal:

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, (X' \Omega^{-1} X)^{-1}).$$

GLS in matrix form II

- If the covariance of the errors Ω is **unknown**, one can get a consistent estimate of Ω , say $\hat{\Omega}$, we proceed in two stages:
- The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix;

$$\begin{split} \widehat{\boldsymbol{\beta}}_{OLS} &= (X'X)^{-1}X'\boldsymbol{y}\\ \widehat{\boldsymbol{u}}_j &= (Y-X\boldsymbol{b})_j\\ \widehat{\boldsymbol{\Omega}}_{OLS} &= \mathsf{diag}(\widehat{\sigma}_1^2, \widehat{\sigma}_2^2, \dots, \widehat{\sigma}_n^2). \end{split}$$

 Using the consistent estimator of the covariance matrix of the errors, we implement GLS ideas.

$$\widehat{\boldsymbol{\beta}}_{\text{GLS}} = (\boldsymbol{X}' \widehat{\boldsymbol{\Omega}}_{\text{OLS}}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}' \widehat{\boldsymbol{\Omega}}_{\text{OLS}}^{-1} \boldsymbol{y}$$

GLS in matrix form III

 \bullet The procedure can be iterated and this estimation of $\widehat{\Omega}$ can be iterated to convergence.

$$\begin{split} & \widehat{\boldsymbol{u}}_{GLS} = \boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}_{GLS} \\ & \widehat{\boldsymbol{\Omega}}_{GLS} = \text{diag}(\widehat{\boldsymbol{\sigma}}_{GLS,1}^2, \widehat{\boldsymbol{\sigma}}_{GLS,2}^2, \dots, \widehat{\boldsymbol{\sigma}}_{GLS,n}^2) \\ & \widehat{\boldsymbol{\beta}}_{GLS} = (\boldsymbol{X}' \widehat{\boldsymbol{\Omega}}_{GLS}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}' \widehat{\boldsymbol{\Omega}}_{GLS}^{-1} \boldsymbol{y} \end{split}$$

• **Question**: How do you calculate the degrees of freedom of the model? [Hint: think about the hat matrix]

WLS example – Example 11.7 I

• Assume we want to make WLS regression with the give data.

Y	X	σį	Y_i/σ_i	X_i/σ_i
3396	1	743.7	4.5664	0.0013
3787	2	851.4	4.4480	0.0023
4013	3	727.8	5.5139	0.0041
4104	4	805.06	5.0978	0.0050
4146	5	929.9	4.4585	0.0054
4241	6	1080.6	3.9247	0.0055
4387	7	1243.2	3.5288	0.0056
4538	8	1307.7	3.4702	0.0061
4843	9	1112.5	4.3532	0.0081

- What can you do then?
 - **Option 1:** Apply the general GLS formula in p.5 to obtain the estimators.
 - **Option 2:** Use OLS to regress Y/σ_i with $1/\sigma_i$ and X_i/σ_i without intercept.
- Can you obtain the same results?
- Compare the WLS results with OLS results.

WLS example – Example 11.7 II

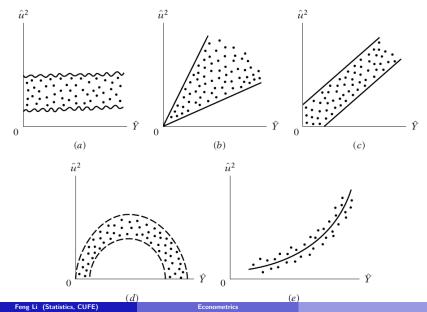
The regression results of WLS are as followsOLS regression results: $(\widehat{Y_i}/\sigma_i) = 3406.639(1/\sigma_i) + 154.153(X_i/\sigma_i)$ $\hat{Y}_i = 3417.833 + 148.767 X_i$ (80.983)(16.959)(81.136)t = (42.066)(9.090)t = (42.125) $R^2 = 0.9993^{31}$ $R^2 = 0.9993^{31}$

• How do the standard errors and t statistics change?

Consequences of using OLS when heteroscedastic

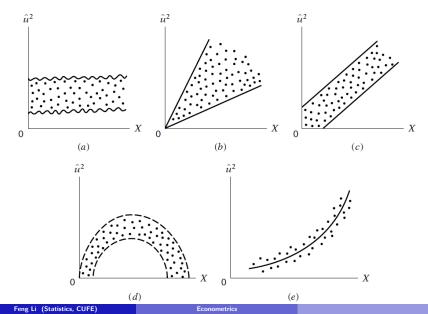
- Suppose there are heteroscedastic but we insist using OLS. What will go wrong? – whatever conclusions we draw may be misleading.
- We could not establish confidence intervals and test hypotheses with usual *t*, *F* tests.
- The usual tests are likely to give larger variance than the true variance.
- $\bullet\,$ The variance estimator of $\hat{\beta}$ by OLS is a **biased** estimator of the true variance.
- The usual estimator of σ^2 which was $\sum \hat{u}_i^2/(n-2)$ is **biased**.

Detecting heteroscedasticity (1) \rightarrow Plot \hat{u}_i^2 against \hat{Y}_i



13 / 22

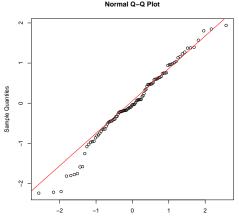
Detecting heteroscedasticity (2) \rightarrow Plot \hat{u}_i^2 against X_i



14 / 22

Detecting heteroscedasticity (3) → QQ plot

• If the residual is normally distributed, plot sample quantile for the residual against the theoretical quantile from standard normal distribution should on the 45 degree line.



Theoretical Quantiles

Detecting heteroscedasticity (4) → White's general heteroscedasticity test

- H₀: No heteroscedasticity.
- Consider $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$, (other models are the same)
- step 1: Do the OLS to obtain the residuals \hat{u}_i .
- step 2: Run the following model with the covariates and their crossproducts

$$\hat{u}_{i}^{2} = \alpha_{1} + \alpha_{2}X_{2i} + \alpha_{3}X_{3i} + \alpha_{4}X_{2i}^{2} + \alpha_{5}X_{3i}^{2} + \alpha_{6}X_{2i}X_{3i} + \nu_{i}$$

and obtain R².

- step 3: $nR^2 \sim \chi^2(k-1)$ where k is no. of unknown parameters in step 2.
- step 4: If $\chi^2_{\text{obs}}(k-1)>\chi^2_{\text{crit}}(k-1),$ reject $H_0.$
- Question: How do you carry out White's test with the model $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$?

Example of White's test

• Consider the following regression model with 41 observations,

$$\ln Y_i = \beta_1 + \beta_2 \ln X_{2i} + \beta_3 \ln X_{3i} + u_i$$

where Y= ratio of trade taxes (import and export taxes) to total government revenue, $X_2=$ ratio of the sum of exports plus imports to GNP, and $X_3=$ GNP per capita.

- By applying White's heteroscedasticity test. We first obtain the residuals from regression.
- Then we do the following auxiliary regression

$$\hat{u}_{i}^{2}=-5.8+2.5 \text{ ln } X_{2i}+0.69 \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}-0.04 (\text{ln } X_{3i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i} \text{ ln } X_{3i}-0.4 (\text{ln } X_{2i})^{2}+0.002 \text{ ln } X_{2i}-0.002 \text{$$

and $R^2 = 0.1148$.

- Can you compute the white's test statistic?
- What is your conclusion of heteroscedasticity? (The 5% critical value of $\chi^2_{df=5} = 11.07$, and the 10% critical value of $\chi^2_{df=5} = 9.24$)

Detecting heteroscedasticity (5) → Goldfeld-Quandt test

- It is popular to assume σ_i^2 is positively related to one of the covariates e.g. $\sigma_i^2 = \sigma^2 X_{2i}^2$ in a three covariates model.
- The bigger X_i we have, the bigger σ_i^2 is.
- H₀ : Homoscedasticity
- step 1: Sort covariates with the order of X_{2i}
- **step 2**: Delete the c central observations and dived the remaining parts into two groups.
- step 3: Fit the two groups separately with OLS and obtain RSS₁ (for the small values group) and RSS₂ (for the large values group) with both (n-c)/2 k degrees of freedom. Why?
- step 4: Compute the ratio

$$\lambda = \frac{\text{RSS}_2/[(n-c)/2 - k]}{\text{RSS}_1/[(n-c)/2 - k]} \sim F(((n-c)/2 - k), ((n-c)/2 - k))$$

• Reject $H_0 \text{ if } \lambda > F_{\texttt{crit}}(((n-c)/2-k),((n-c)/2-k)).$

Detecting heteroscedasticity (6) → Breusch-Pagan-Godfrey test

- \bullet Consider the model $Y_i=\beta_1+\beta_2X_{2i}+...++\beta_kX_{ki}+u_i$
- Assume that $\sigma_i^2 = \alpha_1 + \alpha_2 Z_{2i} + ... + \alpha_m Z_{mi}$ where Z_i are known variables which can be X_i .
- If there no heteroscedasticity, then $\alpha_2 = ... = \alpha_m = 0$ and $\sigma_i^2 = \alpha_1$.
- step 1: Obtain $\hat{u}_1, ..., \hat{u}_n$ by the model.
- step 2: Obtain $\tilde{\sigma}^2 = \sum \hat{u}_i^2/n.$
- step 3: Construct variable $p_{i}=\hat{u}_{i}^{2}/\tilde{\sigma}^{2}$
- step 4: Regress $p_i = \alpha_1 + \alpha_2 Z_{2i} + ... + \alpha_m Z_{mi} + \nu_i$
- step 5: Obtain

$$ESS/2 \sim \chi^2(m-1)$$

• Evidence of heteroscedasticity when $\text{ESS}/2>\chi^2_{\text{crit}}(m-1).$

Detecting heteroscedasticity (7) → Spearman's rank correlation test

- The null hypothesis: Heteroscedasticity
- 2 Obtain the residuals \hat{u}_i from the regression.
- **3** Rank $|\hat{u}_i|$ and X_i (or Y_i)
- Compute the Spearman's rank correlation coefficients

$$r_s = 1 - 6 \frac{\sum d_i^2}{n(n^2 - 1)}$$

where d_i are the differences of $|u_i|$ and X_i in the ranked order and n is number of individuals.

5 The significance of the sample r_s can be tested by the t test as

$$t_{obs} = \frac{r_s \sqrt{n-2}}{1-r_s^2}$$

Decision rule: if t_{obs} > t_{critical}, accept H₀. Otherwise, there is no heteroscedasticity. Multiple regressors should repeat this procedure multiple times.

How to obtain estimators

 $\Rightarrow \text{ with } Y_i = \beta_1 + \beta_2 X_i + u_i \text{ when } E(u_i) = 0 \text{ and } Var(u_i) = \sigma_i^2$

- When σ_i is known: use WLS method to obtain BLUE estimators. pp. 4–5
- When σ_i is not known:
 - + If $V(\mathfrak{u}_{\mathfrak{i}})=\sigma^2 X_{\mathfrak{i}}^2$, do OLS with model

$$\frac{Y_i}{X_i} = \beta_2 + \beta_1 \frac{1}{X_i} + \frac{u_i}{X_i}$$

and $Var(u_i/X_i) = \sigma^2$. Why?

- If $Var(\mathfrak{u}_{\mathfrak{i}})=\sigma^{2}X_{\mathfrak{i}}$ (X_{\mathfrak{i}}>0), do OLS with model

$$\frac{Y_i}{\sqrt{X_i}} = \beta_2 + \beta_1 \frac{1}{\sqrt{X_i}} + \frac{u_i}{\sqrt{X_i}}$$

and $Var(u_i/\sqrt{X_i})=\sigma^2.$ Why?

- If $Var(u_i)=\sigma^2[E(Y_i)]^2$ (X $_i>$ 0), do OLS with model

$$\frac{Y_i}{\hat{Y_i}} = \beta_2 + \beta_1 \frac{1}{\hat{Y_i}} + \frac{u_i}{\hat{Y_i}}$$

and $Var(u_i/\hat{Y_i}) \approx Var(u_i)/[E\hat{Y_i}]^2 = Var(u_i)/{Y_i}^2 = \sigma^2$.

- Do OLS with log transformed data $lnY_i=\beta_1+\beta_2lnX_i+\nu_i$ can also reduce heteroscedasticity.

Take home questions

• 11.1, 11.2, 11.6, 11.21

• How do you perform the maximum likelihood estimation when there is heteroscedastic and Ω is known?