L3: CNLRM Distribution Interval, and Testing

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

What we have learned last time...

- 1 Estimating $\hat{\beta}_1$ and $\hat{\beta}_2$ and find their variance via OLS.
- **2** The properties of OLS (have you done the assignments?).
- 3 The assumptions of linear model. Are they realistic?
- 4 The measurement of goodness fit.
- **6** Remember to use the correct notations:
 - **1** The population regression function: $Y_i = \beta_1 + \beta_2 X_i + u_i$
 - 2 We estimate it from sample regression function: $Y_i=\hat{\beta}_1+\hat{\beta}_2 X_i+\hat{u}_i$
 - **3** And the estimated value of Y_i : $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$

Today we are going to learn...

- Normal assumptions of ui
- **2** Confidence intervals for regression coefficients β_1 and β_2
- **3** Confidence interval for σ^2
- 4 Hypothesis testing
- **5** Predictions
- **6** Normality tests of residuals
- Consistency of OLS and MLE

Normal assumptions of u_i

 $\textbf{0} \ \text{The classical normal linear regression model assumes each } u_i \ \text{is distributed} \\ \text{normally with} \\$

$$\begin{split} & E(u_i) = 0 \\ & Var(u_i) = E(u_i - E(u_i))^2 = \sigma^2 \\ & cov(u_i, u_j) = E[(u_i - E(u_i))(u_j - E(u_j))] = E(u_i, u_j) = 0, i \neq j. \end{split}$$

2 We write
$$u_i \sim N(0, \sigma^2)$$
 for short.

- 3 Why normal?
 - 1 Simple.
 - 2 Central limit theorem.

The properties under normal assumptions of u_i

1 The estimators are unbiased, i.e.,

$$E(\hat{\beta}_1) = \beta_1$$
, $E(\hat{\beta}_2) = \beta_2$ see Appendix 3A.2

- 2 The variance of the estimators are minimal.
- **3** The estimators of the parameters also follows normal distribution (suppose σ^2 is known which is of course not true).

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sum X_i^2}{n \sum x_i^2} \sigma^2), \qquad \hat{\beta}_2 \sim N(\beta_2, \frac{1}{\sum x_i^2} \sigma^2).$$

(3 Recall that σ^2 is not known and replaced with its estimator $\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{n-2}$, and

$$(n-2)\frac{\hat{\sigma}^2}{\sigma^2}\sim \chi^2(n-2).$$

(3 $\hat{\beta}_1$ is independent of $\hat{\sigma}^2$, so does $\hat{\beta}_2$.

Summary: The least estimators $\hat{\beta}_1$ and $\hat{\beta}_2$ are best unbiased estimators(BUE) in the entire class of unbiased estimators.

Feng Li (SAM, CUFE)

Econometrics

Confidence Intervals for regression coefficients

 $\begin{array}{l} \begin{array}{l} \hat{\beta}_{i}-\beta_{i}\\ se(\hat{\beta}_{i}) \end{array} \sim N(0,1) \mbox{ for } i=1,2 \mbox{ when } \sigma^{2} \mbox{ is known which is rare.} \end{array} \\ \\ \begin{array}{l} \hat{\beta}_{i}-\beta_{i}\\ se(\hat{\beta}_{i}) \end{array} \sim t(n-2) \mbox{ when } \sigma^{2} \mbox{ is replaced by } \hat{\sigma}^{2}. \end{array} \\ \\ \begin{array}{l} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \hat{\beta}_{i}\sigma(\hat{\beta}_{i}) \end{array} \sim t(n-2) \mbox{ when } \sigma^{2} \mbox{ is replaced by } \hat{\sigma}^{2}. \end{array} \end{array}$

$$\Pr\left[-t_{\alpha/2}\leqslant \frac{\hat{\beta}_{\mathfrak{i}}-\beta_{\mathfrak{i}}}{se(\hat{\beta}_{\mathfrak{i}})}\leqslant t_{\alpha/2}\right]=1-\alpha$$

which provides $100(1-\alpha)$ percent confidence interval for $\beta_{\rm t}$

$$\textrm{Pr}\left[\hat{\beta}_{\mathfrak{i}}-t_{\alpha/2}se(\hat{\beta}_{\mathfrak{i}})\leqslant\beta_{\mathfrak{i}}\leqslant\hat{\beta}_{\mathfrak{i}}+t_{\alpha/2}se(\hat{\beta}_{\mathfrak{i}})\right]=1-\alpha$$

or simply $\hat{\beta}_{i} \pm t_{\alpha/2} se(\hat{\beta}_{i})$.

2 The interpretation:

Right way: Given the confidence coefficient of $1-\alpha$, $100(1-\alpha)$ out of 100 cases the interval will contain the true β_i

Wrong way: The probability of β_i falling into the interval is $100(1 - \alpha)$.

Note: The probability of β_i falling into the interval is either 0 or 1.

Confidence Intervals for σ^2

1 Given $\alpha/2$ level of significance,

$$\Pr\left[\chi^2_{1-\alpha/2} \leqslant (n-2)\frac{\hat{\sigma}^2}{\sigma^2} \leqslant \chi^2_{\alpha/2}\right] = 1 - \alpha$$

which provides $100(1-\alpha)$ percent confidence interval for σ^2

$$\Pr\left[(n-2)\frac{\hat{\sigma}^2}{\chi^2_{\alpha/2}}\leqslant \sigma^2\leqslant (n-2)\frac{\hat{\sigma}^2}{\chi^2_{1-\alpha/2}}\right]=1-\alpha$$

Remember that χ^2 is always positive and skewed.

2 Exercise Table 3.2: Construct the confidence intervals for β_2 and σ^2 .

The significance of coefficients: the t test

- Significant of a statistic: If the value of the test statistic lies in the critical region.
- 2 Significance testing: Find the critical region
- **3** Procedures:
 - **1** Write down the null hypothesis (H_0) and alternative hypothesis (H_α)
 - **2** Calculate the test statistic e.g., $t = (\hat{\beta}_2 \beta_2^*)/se(\hat{\beta}_2)$
 - S Look up the table and find the critical value
 - 4 Make decision.
- One-side test vs two-sided test Table

Type of hypothesis	<i>H</i> ₀ : the null hypothesis	<i>H</i> ₁ : the alternative hypothesis	Decision rule: reject <i>H</i> ₀ if
Two-tail	$\beta_2 = \beta_2^*$	$\beta_2 \neq \beta_2^*$	$ t > t_{\alpha/2, df}$
Right-tail	$eta_2 \leq eta_2^\star$	$eta_2 > eta_2^\star$	$t > t_{lpha, df}$
Left-tail	$eta_2 \geq eta_2^\star$	$eta_2 < eta_2^\star$	$t < -t_{lpha, { m df}}$

The significance of σ^2 : the χ^2 test

- () The testing purpose: if $\sigma^2=\sigma_0^2 \text{ or not.}$
- 2 The decision rule.

<i>H</i> ₀ : the null hypothesis	H ₁ : the alternative hypothesis	Critical region: reject <i>H</i> ₀ if
$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\frac{\mathrm{d} \mathrm{f}(\hat{\sigma}^2)}{\sigma_0^2} > \chi^2_{\alpha,\mathrm{d} \mathrm{f}}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\frac{\mathrm{d} \mathrm{f}(\hat{\sigma}^2)}{\sigma_0^2} < \chi^2_{(1-\alpha),\mathrm{d} \mathrm{f}}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\frac{\mathrm{d}f(\hat{\sigma}^2)}{\sigma_0^2} > \chi^2_{\alpha/2,\mathrm{d}f}$ or < $\chi^2_{(1-\alpha/2),\mathrm{d}f}$
		or $<\chi^2_{(1-\alpha/2),df}$

The ANOVA table for the two-variable regression model

1 We arrange the sums of squares in the following table (aka ANOVA table.)

ANOVA TABLE FOR THE TWO-VARIABLE REGRESSION MODEL

Source of variation	SS*	df	MSS [†]
Due to regression (ESS)	$\sum \hat{y}_i^2 = \hat{\beta}_2^2 \sum x_i^2$		$\hat{\beta}_2^2 \sum x_i^2$
Due to residuals (RSS)	$\sum \hat{u}_i^2$	<i>n</i> – 2	$\frac{\sum \hat{u}_i^2}{n-2} = \hat{\sigma}^2$
TSS	$\sum y_i^2$	<i>n</i> – 1	

*SS means sum of squares.

[†]Mean sum of squares, which is obtained by dividing SS by their df.

2 Then we consider

$$\frac{\text{ESS/df}_{\text{ESS}}}{\text{RSS/df}_{\text{RSS}}} = \frac{\hat{\beta}_2^2 \sum x_i^2}{\sum \hat{u}_i^2 / (n-2)} \sim F(1, n-2)$$

which can be used to test the overall significance of the model. In particular the null hypothesis of $\beta_2 = 0$ can also be tested (**How**?).

Predictions

0

0

1 Mean predictions: Predict Y₀ given X₀ which is from the observations that on the population regression line (see next figure).

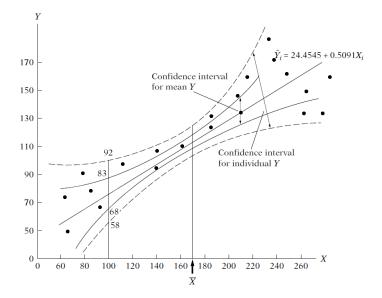
$$\text{var}(\hat{Y}_0) = \sigma^2 \left[\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum x_i^2} \right]$$

$$t = \frac{\hat{Y}_0 - (\beta_1 + \beta_2 X_0)}{se(\hat{Y}_0)}$$

2 Individual prediction: Predict Y₀ given X₀ which is not from the population regression line.

2

$$\begin{split} \mathrm{var}(\mathrm{Y}_{0}-\hat{\mathrm{Y}}_{0}) &= \sigma^{2}\left[1+\frac{1}{n}+\frac{(\mathrm{X}_{0}-\bar{\mathrm{X}})^{2}}{\sum x_{i}^{2}}\right] \\ \mathrm{t} &= \frac{\mathrm{Y}_{0}-\hat{\mathrm{Y}}_{0}}{se(\mathrm{Y}_{0}-\hat{\mathrm{Y}}_{0})} \end{split}$$



Normality tests of residuals

- 1 Histogram of residuals
- Anderson-Darling test:
 H₀: the variable is normal distributed.
- **3** Jarque-Bera test:

 H_0 : the variable is normal distributed (skewness(S)=0, kurtosis(K)=3). test statistic: JB = $n[S^2/6 + (K-3)^2/24]$

Take home questions

Read Appendix A.8, p.831 if you have problems of hypothesis testing.
 Do the example in p. 133.

Consistency of an estimator

- Consistency: An estimator is unbiased and its variance tends to zero as the sample size goes to infinity.
- The OLS and MLE estimators are consistent.