L13: Time series essentials

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

Today we are going to learn...

- 1 The lag operators
- **2** The difference operators
- 3 Linear models for stationary time series
- 4 Stationary

5 White noise

The lag operators

- Suppose X_t is the GDP for past ten years (t = 1, 2, ..., 10).
- The X_{t-1} is called the GDP with a lapse of time (i.e. **a lag**).
- In time series analysis, the lag operator or backshift (L is the notation) operator operates on an element of a time series to produce the previous element.
 - Given some time series X = {X₁, X₂, ... }
 - then $LX_t = X_{t-1}$ for all t > 1
 - or equivalently $X_t = L X_{t+1}$ for all $\ t \geqslant 1$
 - and this also works $L^{-1}X_t = X_{t+1}$
 - and $L^k X_t = X_{t-k}$.
- How many lags can we have maximumly?

Why lags?

- Psychological reasons
 - Those who become instant millionaires by winning lotteries may not change the lifestyles intermediately.
 - People do not change their consumption habits immediately following a price decrease or an income increase.
- Technological reasons
 - We obtained the data from the stock market maybe always 5 seconds behind real time due to technological reasons.
 - The data obtain from authorities maybe always delayed due to confidential reasons.
- Institutional reasons
 - Employers often give their employees a choice among several health insurance plans, but once a choice is made, an employee may not switch to another plan for at least 1 year.
 - You are only allowed to take the re-exam next year if you fail this time.

The difference operator

- Assume your yearly salaries are X_t, how much do you earn compared to previous year?
- That should be $\Delta_t X_t = X_t X_{t-1}$ which is called **the first difference** operator in time series analysis.
- It could be written in terms of lag operators $\Delta_t X_t = X_t X_{t-1} = (1-L) X_t$
- Similarly, the second difference operator works as follows:

$$\begin{split} \Delta(\Delta X_t) &= \Delta X_t - \Delta X_{t-1} \\ \Delta^2 X_t &= (1-L)\Delta X_t \\ \Delta^2 X_t &= (1-L)(1-L)X_t \\ \Delta^2 X_t &= (1-L)^2 X_t \ . \end{split}$$

Autocovariance and Autocorrelation Functions

• The covariance between y_t and its value at another time period, say, y_{t+k} is called the **autocovariance** at lag k,

$$\gamma_k = Cov(y_t, y_{t+k}) = E((y_t - \mu)(y_{t+k} - \mu))$$

- The collection of the values of $\gamma_k, \ k=0,1,2,...$ is called the autocovariance function.
- The autocovariance at lag k = 0 is just the variance of the time series;
- The autocorrelation coefficient at lag k is

$$\rho_{k} = \frac{Cov(y_{t}, y_{t+k})}{Var(y_{t})} = \frac{\gamma_{k}}{\gamma_{0}}$$

- Note that by definition $\rho_0 = 1$.
- The collection of the values of $\rho_k.\ k=0.1.2...$ is called the autocorrelation function (ACF).
- The ACF is independent of the scale of measurement of the time series.
- The autocorrelation function is symmetric around zero $\rho_k = \rho_{-k}$.

Sample autocorrelation function particial autocorrelation I

• It is necessary to estimate the autocovariance and autocorrelation functions from a time series of finite length. The usual estimate of the autocovariance function is

$$c_k = \hat{\gamma}_k = \frac{1}{T} \sum_{t=1}^{T-k} (y_t - \bar{y})(y_{t+k} - \bar{y})$$

• The autocorrelation function is estimated by the **sample autocorrelation function**

$$r_k = \hat{\rho}_k = \frac{c_k}{c_0}$$

Sample autocorrelation function particial autocorrelation II

- The partial correlation is the correlation between two variables after being adjusted for a common factor that may be affecting them.
- The partial correlation between X and Y after adjusting for Z is defined as

$$\operatorname{Corr}(X - \hat{X}, Y - \hat{Y})$$

where
$$\hat{X} = a_1 + b_1 Z$$
 and $\hat{Y} = a_2 + b_2 Z$

 The partial autocorrelation function between y_t and y_{t-k} is the autocorrelation between y_t and y_{t-k} after adjusting for y_{t-1}, y_{t-2},...,y_{t-k+1} and y_{t-k}.

Linear models for stationary time series

Consider a linear operation from one time series x_t to another time series y_t

$$y_t = \sum_{i=-\infty}^{\infty} \psi_i x_{t-i}$$

which is called a linear filter.

- The linear filter should have the flowing properties
 - **Time-invariant**: ψ do not depend on time.
 - Stable if $\sum_{i=-\infty}^{\infty} |\psi_i| < \infty$

Stationary

- A stationary time series exhibits similar "statistical behavior" in time and this is often characterized as a **constant** probability distribution (in terms of mean, variance, skewness, kurtosis, or even higher moments) in time.
- If we only consider the first two moments of the time series, we are talking about weak stationarity which is defined
 - The expected value of the time series does not depend on time.
 - The autocovariance function defined as $Cov(y_t,y_{t-k})$ for any lag k is only a function of k and not time t.
- If the time series is not stationary, it can be examined by observing autocorrelation function (ACF) and particial autocorrelation function (PACF).

Feng Li (Stat & Math, CUFE)

Econometrics

Example: Calculating ACF with R.

White noise

- If a time series consists of uncorrelated observations and has constant variance. we say that it is **white noise**.
- If in addition, the observations in this time series are normally distributed, the time series is **Gaussian white noise**.
- If a time series is white noise, the distribution of the sample autocorrelation coefficient at lag k in large samples is approximately normal with mean zero and variance 1/T.

Stationary time series

- Many time series do not exhibit a stationary behavior.
- The stationarity is in fact a rarity in real life.
- However it provides a foundation to build upon since (as we will see later on) if the time series in not stationary, its first difference $(y_t y_{t-1})$ will often be stationary.

Stationary time series

• For a time-invariant and stable linear filter and a stationary input time series x_t

$$y_t = \sum_{i=-\infty}^{\infty} \psi_i x_{t-i}$$

with $\mu_x = E(x_t)$ and $\gamma_x(k) = Cov(x_t, x_{t+k})$.

- The output time series \boldsymbol{y}_t is also a stationary time series where

$$\begin{split} E(y_t) &= \mu_y = \sum_{-\infty}^{\infty} \psi_i \mu_x \\ \gamma_y(k) &= Cov(y_t, y_{t+k}) = \sum_{-\infty}^{\infty} \psi_i \psi_j \gamma_x (i - j + k) \end{split}$$

Stationary time series

• The following stable linear process with white noise time series, ϵ_t ,

$$y_t = \mu + \sum_{-\infty}^{\infty} \psi_i \varepsilon_{t-i}$$

is also stationary where ε_{t} has $E(\varepsilon_{t})=0$ and

$$\gamma_{\varepsilon}(k) = Cov(\varepsilon_{t}, \varepsilon_{t+k}) = \begin{cases} \sigma^{2} & k = 0\\ 0 & \text{otherwise} \end{cases}$$

- The autocovariance function of \boldsymbol{y}_t is

$$\begin{split} \gamma_{y}(k) &= Cov(y_{t}, y_{t+k}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \psi_{i} \psi_{j} \gamma_{\varepsilon}(i-j+k) \\ &= \sigma^{2} \sum_{i=0}^{\infty} \psi_{i} \psi_{i+k} \end{split}$$

Introduction to Time Series Analysis and Forecasting by Montgomery, Jennings and Kulahci (Chapter 5)

Available at http://feng.li/files/ec2013fall/ARIMA-Models.pdf