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1.Introduction and Markov Graphs
Figure 17.1

a graphical model for a flow-cytometry dataset

p=11 proteins N=7466 cells

potentials

           main challenges           main challenges           main challenges           main challenges
1.model selection;
2.estimation (learning);
3.computation of marginal vertex 
    probilities & expectations.(inference)



� No edge joining X and Y No edge joining X and Y No edge joining X and Y No edge joining X and Y    X  X  X  X ⊥⊥⊥⊥ Y |rest Y |rest Y |rest Y |rest
� if C separates A and B then A if C separates A and B then A if C separates A and B then A if C separates A and B then A ⊥⊥⊥⊥ B|C. B|C. B|C. B|C.
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C is the set of maximal cliques, and the positive functions             are 

called clique potentials.

These are afinities that capture the dependence in XC by scoring certain 

instance xC higher than others.

Z is the partition function. 

The representation of f(x) implies a graph with independence properties 

defined by the cliques in the product.
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A complete graph does not uniquely specify the 

higher-order dependence structure in the joint 

distribution of the variables.
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Where we have partitioned Σ as                                      . 

 According to what we get in the Statistical Decision Theory,

                        .
We can partition Θ    in the same way. Since                   ,  we have

                                                                                                                                                                ,

where                                                 Then we find                                     .

We have got two things :
1. Here zero elements in ββββ    and hence θθθθZY mean that the corresponding 
elements of Z are conditionally independent of Y, given the rest.
2.We can learn about this dependence structure through multiple linear
regression.
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2.UGM for Continuous Variables



 Estimation when the Graph Structure is Known

� 1.With some realization of X, we want to estimate the parameters in 
a graph that approximates their joint distribution. 

� Suppose that we have N multivariate normal realizations xi, i=1,...,N 
with population mean μ and covariance Σ in a complete (fully 
connected) graph.

� Let 

� be the empirical covariance matrix, with      the sample mean vector.
�  Ignoring constants, the log-likelihood of the data can be written as
�                                            maximized partially with respect to μ.
� According to         , we have the MLE of Σ is S.
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� 2.To constrain the log-likelihood above for all missing edges, we add 
Lagrange constants 

� So we will get the maximizing gradient equation as

� Here, Θ-1 equals the derivate of log det Θ, and Γ is a matrix of 
Lagrange parameters with nonzero values for all pairs with edges 
absent.

� Next, use regression to solve for Θ and its inverse W=Θ-1 one row 
and column at a time.
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� As above we did, partition the matrices into two parts. We have

�                                              It implies 
� where                       .
� Now substituting w12 gives                              . 
� Finally, Suppose there are p−q nonzero elements in γ12—i.e., p−q 

edges constrained to be zero. 

� By using partitioned inverse formulas, we have
� where 

� So, we have learned three steps for the estimation. They are
� 1. Initialize W = S.
� 2. repeat for j = 1,2,...,p until convergence:
� (a) Partition the matrix W into part 1: all but the jth row and
� column, and part 2: the jth row and column.
� (b) Solve                         for the unconstrained edge parameters β*. 

Obtain     by padding     with zeros in the appropriate positions.
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� (c) Update 
� 3. In the final cycle (for each j) solve for                           , with 

� Taking a little example, we apply our method to the problem above; in the 
modified regression for variable 1 in step (b), variable 3 is left out. The 
procedure quickly converged to the solutions:
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� In most cases we do not know which edges to omit from our graph, 
and so would like to try to discover this from the data itself.

� A simple approach:  rather than trying to fully estimate Σ or Θ = Σ-1, 
we can only estimate which components of θij are nonzero.

� A more systematic approach: consider maximizing the penalized 
log-likelihood 

� where          is the lasso norm—the sum of the absolute values of 
the elements of Σ-1, and we have ignored constants.

� Next,

� The lasso minimizes 
� The gradient of this expression is

 Estimation of the Graph Structure
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� To solve the modified lasso problem at each stage, we use the 
pathwise coordinate descent method.

� Letting V=W11, the update has the form

� for j=1, 2,..., p-1, 1, 2,..., p-1,..., where S is the soft-threshold 
operator:

� Algorithm 17.2 Graphical Lasso.
� 1. Initialize W = S + λI. The diagonal of W remains unchanged in
� what follows.
� 2. Repeat for j = 1,2,...p,1,2,...p,... until convergence:
� (a) Partition the matrix W into part 1: all but the jth row and
� column, and part 2: the jth row and column.
� (b) Solve the estimating equations W11β - s12+ λ • Sign(β) = 0.
� (c) Update 
� 3. In the final cycle (for each j) solve for                         , with 
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� Vertices referred to as "nodes"or "unites"(binary-valued).

� Ising model ~ statistical mechanics literature                           
Boltzmann machines ~ machine learning literature

� The values at each node can be observed (“visible”) or 
unobserved(“hidden”).

� The nodes are often organized in layers.

3.UGM for Discrete Variables



� We first consider the simpler case in which all nodes are visible with edge 
pairs (j, k) enumerated in E.(Ising model)

� Joint distribution

�        is the log of the partition function

� The parameter      measures the dependence of     on     , conditional on the 
other nodes.

� Ising model implies a logistic form for each node conditional on the others:

�       denotes all of the nodes except    . 

( , )

( , ) exp[ ( )]jk j k
j k E

p X X Xθ
∈

Θ = −Φ Θ∑

{ }0,1 pX ∈ =X

( )Φ Θ

( , )
( ) log [exp( )]jk j k

x j k E
x xθ

∈ ∈

Φ Θ = ∑ ∑
X

jkθ jX kX

0
( , )

1Pr( 1 )
1 exp( )j j j

j jk k
j k E

X X x
xθ θ− −

∈

= = =
+ − − ∑

jX − j



Estimation when the Graph Structure is Known

� Suppose we have observations                                                                

� The log-liklihood is

� The gradient of the log-likelihood is     

� Setting the gradient to zero gives
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� To find the maximum likelihood estimates, we can use gradient search or 
Newton methods. However the computation of                 is not generally 
feasible for large p (e.g., larger than about 30).

� For smaller    , a number of standard statistical approaches are available:    
• Poisson log-linear modeling                                                                           
• Gradient descent                                                                                           
• Iterative proportional fitting(IPF)

� When    is large (> 30) other approaches have been used to approximate 
the gradient:                                                                                                    
• The mean field approximation                                                                       
• Gibbs sampling(successively sampling from the estimated model      
probabilities                    )
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Hidden Nodes

� Suppose that a subset of the variables      are hidden ,and the remainder      

          are visible.

� The log-liklihood of the observed data is

� The gradient works out to be

� The first term is an empirical average of          if both are visible; if one or 
both are hidden, they are first imputed given the visible data, and then 
averaged over the hidden variables.

� The second term is the unconditional expectation of          .

1

1 ( , )

( ) log Pr ( )

       log exp ( ( ))θ

Θ
=

= ∈ ∈

Θ = =

⎡ ⎤
= −Φ Θ⎢ ⎥

⎣ ⎦

∑

∑ ∑ ∑

ℓ
N

i
i

N

jk ij ik
i x X j k E

X x

x x
H H

V V

( ) ˆ ( ) ( )
θ Θ Θ
Θ

= −
ℓ

j k j k
jk

d E E X X X E X X
d V V

HX

VX

j kX X

j kX X



� The inner expectation in the first term can be evaluated using basic rules of 
conditional expectation and properties of Bernoulli random variables.

� Now two separate runs of Gibbs sampling are required;                               
to estimate                  and

� In this latter run, the visible units are fixed (“clamped”) at their observed 
values and only the hidden variables are sampled.
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Estimation of the Graph Structure

� The use of a lasso penalty with binary pairwise Markov networks has 
been suggested by Lee et al. (2007) and Wainwright et al. (2007).

� Conjugate gradient procedure for exact maximization of a penalized log-
likelihood(the computation of                 )

� An approximate solution approach for the Gaussian graphical model        
• an L1-penalized logistic regression model to each node as a function of 
the other nodes, and then symmetrize the edge parameter estimates.       
• under certain conditions either approximation estimates the nonzero 
edges correctly as the sample size goes to infinity                                 
(can handle denser graphs without the computation of                 )
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� key difference between the Gaussian and binary models

     • In the Gaussian case, both Σ and its inverse will be of interest,                  
the graphical lasso procedure delivers estimates for both.

     • In the Markov model for binary data,     is the object of interest, and its 
inverse is not of interest.

Θ



Restricted Boltzmann Machines

� A restricted Boltzmann machine (RBM) consists of one layer of visible 
units and one layer of hidden units with no connections within each layer.

� the visible layer is divided into input variables     and output variables    , 
and there is a hidden layer    .
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� The restricted form of this model simplifies the Gibbs sampling for 
estimating the expectations in

     since the variables in each layer are independent of one another, given the 
variables in the other layers.Hence they can be sampled together, using the 
conditional probabilities given by expression

� Restricted Boltzmann machine has the same generic form as a single 
hidden layer neural network.

     • The neural network minimizes the error

     • The restricted Boltzmann machine maximizes the log-likelihood
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� Gibbs sampling in a restricted Boltzmann machine can be very slow.

� Contrastive Divergence:                                                                        
estimate                 by starting the Markov chain at the data and only 
running for a few steps (instead of to convergence)                              
sample     given         , then         given     and finally    given                                  

� The idea is that when the parameters are far from the solution, it may be 
wasteful to iterate the Gibbs sampler to stationarity, as just a single iteration 
will reveal a good direction for moving the estimates.
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Example:The MNIST database of handwritten digits

� First, an RBM with 784 visible units and 500 hidden units is trained, using 
contrastive divergence, to model the set of images. 

� Then the hidden states of the first RBM are used as data for training a 
second RBM that has 500 visible units and 500 hidden units.

� Finally, the hidden states of the second RBM are used as the features for 
training an RBM with 2000 hidden units as a joint density model. 



THANKS!


