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Flexible density estimation
ï Introduction

Density estimation consecrates on modeling the relationship between
the response y with covariates x with flexible density function f(¨)

y = f(x, θ)

flexible: the density feature θ are modeled in a flexible way.
An example: GLM: density estimation with flexible mean function
η(µ) = Xβ via the linkage.
Two main factors that influence the efficiency of the density
estimation,
(1) choice of flexible densities, and
(2) ways of constructing densities features.
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Flexible density estimation
ï Univariate or multivariate

(Relevantly) simpler in univariate response
§ Mixture of experts
§ Nonparametric methods: kernel regression, splines...

More tricky in the multivariate case
§ Flexible multivariate density is difficult to construct per se
§ Not only modeling the density features in each marginal model
§ But also multivariate correlations and other dependences need to take

into account.
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Mixture distributions

For a given x, a mixture distribution p(y|x) is a finite mixture
K

ÿ

k=1
ωkfk (yi|θk) , i = 1, ...,n.

Latent variable formulation for MCMC

Pr (si = k) = ωk
yi| (si = k) „ fk (yi|θi)

Two-block Gibbs sampler
§ Sample s = (s1, ..., sn) conditional on (θ1, ...,θk).
§ Sample each θk conditional on the allocation s.

A smooth mixture model is a finite mixture density with weights that
are smooth function of the covariates, e.g

ωk (x) =
exp (x 1γk)

řK
r=1 exp (x 1γr)
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ME, SMR and SAGM models
Mixture-of-Experts (ME) (Jacobs et al. (1991))

§ A mixture of regressions where the mixing probabilities are functions of
covariates.

§ Flexibly model the mean regression and frequently used in the machine
learning literature.

§ The components are often linear homoscedastic regressions or even
constant functions.

§ simple-and-many approach.
Smoothly Mixing Regression (SMR) (Geweke & Keane (2007))

§ A generalization of the ME model for regression density estimation
§ Fail to fit heteroscedastic data even with a very large number of

components
Smooth Adaptive Gaussian Mixtures (SAGM) (Villani et al. (2008))

§ A smooth finite mixture of Gaussian densities with the mixing
probabilities.

§ The mixing probabilities, the components means and components
variances modeled as functions of the covariates.

§ Bayesian variable selection are in all three sets of covariates.
§ complex-but-few approach — Enough flexibility is used within the

mixture components so that the number of components can be kept to
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Smooth mixture of asymmetric student’s t densities
ï The model

The split-t density is
c ¨ κ (µ,φ, v) I (y ď µ) + c ¨ κ (µ, λφ, v) I (y ą µ) ,

where κ (µ,φ, v) =
(

v

v+
(y´µ)2
φ2

)(v+1)/2

is the kernel of student t

density and c is the normalization constant.
Each of the four parameters µ,φ, λ and ν are connected to covariates
as

µ = βµ0 + x
1
tβµ

lnφ = βφ0 + x
1
tβφ

ln λ = βλ0 + x
1
tβλ

ln v = βv0 + x
1
tβv

but any smooth link function can equally well be used in the MCMC
methodology.
This make it possible e.g. to have the degrees of freedom smoothly
varying over covariate space; to capture skewness and excess kurtosis
with the components.
Common components if βµ = βφ = βλ = βv, else separate
components.
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Figure: Graphical display of the split-t density with location parameter µ = 0 and scale
parameter λ = 1.8.



Smooth mixture of asymmetric student’s t densities
ï Discussion — Why not over-fit?

Variable selection (details in next page)
§ Automatically reduce the model’s complexity.
§ Investigate the importance of covariates.
§ More efficient.

Automatically add components to make each component simpler.
Evaluating the out-of-sample log predictive density score(LPDS) –
details in “model comparison” .
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Smooth mixture of asymmetric student’s t densities
ï Model comparison

Why not marginal likelihood?
§ The key quantity is Bayesian model comparison is the marginal

likelihood.
§ The marginal likelihood is sensitive to the choice of prior, which is

especially true when the prior is not very informative (Kass, 1993).

We use B-fold cross-validation of the log predictive density
score(LPDS)

§ B´1
B
ř

b=1
lnp (ỹb|ỹ´b, x)

§ Compute the LPDS for ME, SMR, SAGM and our split model with
different components.

§ Compare the differences of LPDS.
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Flexible regression models
ï Introduction

Flexible models of the regression function E(y|x) has been an active
research field for decades.
Attention has shifted from kernel regression methods to spline-based
models.
Splines are regression models with flexible mean functions.
Example: a simple spline regression with only one explanatory variable
with truncated linear basis function can be like this

y = α0 + α1x+ β1(x´ ξ1)+ + ... + βq(x´ ξq)+ + ε

where
§ (x´ ξi)+ are called the basis functions,
§ ξi are called knots (the location of the basis function).
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Flexible regression models with splines
ï Spline example (single covariate with thinplate bases)
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Flexible regression models
ï Spline regression with multiple covariates

Additive spline model
§ Each knot ξj. (scaler) is connected with only one covariate

y = α0+α1x1+...+αqxq+

 m1
ÿ

j1=1
βj1f (x1, ξj1) + ... +

mq
ÿ

jq=1
βjqf

(
xq, ξjq

)+ε
§ Good and simple if you know there is no interactions in the data a

priori.
Surface spline model

§ Each knot ξj (vector) is connected with more than one covariate

y = α0 + α1x1 + ... + αqxq +

[
m
ÿ

j=1
βjg (x1, ...xq,ξj)

]
+ ε

§ A popular choice of g (x1, ...xq,ξj) can be e.g. the multi-dimensional
thinplate spline

g (x1, ...xq,ξj) = }x´ ξj}2 ln }x´ ξj}
§ Can handle the interactions but the model complexity increase

dramatically with the interactive knots.
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The challenges of using splines

How many knots are needed?
§ Too few knots lead to a bad approximation; too many knots yield

overfitting.
Where to place those knots?

§ Equal spacing for the additive model,
§ which is obviously not efficient with the surface model.

Common approaches to the two problems:
§ place enough many knots and use variable selection to pick up useful

ones.
‹ not truly flexible

§ use reversible jump MCMC to move among the model spaces with
different numbers of knots

‹ very sensitive to the prior and not computational efficient
§ clustering the covariates to select knots

‹ does not use the information from the responses
How to choose between additive spline and surface spline?

§ NA
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Introduction to copulas
ï What is a copula?

The word “copula” means linking.
Sklar’s theorem
Let H be a multi-dimensional distribution function with marginal
distribution functions F1(x1), ..., Fm(xm). Then there exists a
function C (copula function) such that

H(x1, ..., xm) =C(F1(x1), ..., Fm(xm))

=C

(
ż x1

´∞ f(z1)dz1, ...,
ż xm

´∞ f(zm)dzm

)
= C(u1, ...,um).

Furthermore, if Fi(xi) are continuous, then C is unique, and the
derivative c(u1, ...,um) = BmC(u1, ...,um)/(Bu1...Bum) is the
copula density.
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Introduction to copulas
ï Some arbitrary examples

If X1, ...,Xm are independent, and iff C is a product copula, then

C(F1(x1), ..., Fm(xm)) =
źm

i=1
Fi(xi)

The bivariate Gaussian copula

C(u1,u2, ρ) = Φ2(Φ
´1(u1),Φ´1(u2), ρ)

=

ż Φ´1(u1)

´∞
ż Φ´1(u2)

´∞
1

2π
a

1´ ρ2
exp

"

´
z2

1 ´ 2ρz1z2 + z
2
2

2(1´ ρ2)

*

dz1dz2

The multivariate probit model is a simple example of a Gaussian
copula, with univariate probit regressions as the marginals.
There are many ways to construct a copula youself.
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What can we do with the copula method?

We can detect extreme events by observing some relative variables?
§ How many people are searching for the word “flue” in a certain area ñ

If there is a flue outbreak.
We can construct a multivariate model that some margins are
continuous but some are discrete?

§ One margin: A company’s stock credited as A, A+ over time.
§ The other margin: the stock returns over time

In the big data world: we can estimate a very heavy multivariate
model with the following steps

§ Independently build each marginal model. Parallel them!
§ Build the multivariate dependences on top of the margins.
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The stock market returns
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Measuring correlation and tail dependence
ï Kendall’s τ and tail-dependences

The Kendall’s τ can be written in terms of copula function:

τ =4
ż ż

F(x1, x2)dF(x1, x2)´ 1 = 4
ż ż

C(u1,u2)dC(u1,u2)´ 1.

As well as the bivariate lower and upper tail dependences

λL = lim
uÑ0+

Pr(X1 ă F
´1
1 (u)|X2 ă F

´1
2 (u)) = lim

uÑ0+
C(u,u)
u

,

λU = lim
uÑ1´

Pr(X1 ą F
´1
1 (u)|X2 ą F

´1
2 (u)) = lim

uÑ1´

1´ C(u,u)
1´ u .

Some facts:
§ The Kendall’s τ is invariant w.r.t. strictly increasing transformations.
§ For all copulas in the elliptical class (Gaussian, t,...), τ = 2

π
arcsin(ρ).

§ The Gaussian copula has zero tail dependence.
§ The student t copula has asmptotic upper tail dependence even for

negative and zero correlations. The tail dependence decreases when
degrees of freedom increases.
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The covariate-contingent copula model
ï The Joe-Clayton copula

The Joe-Clayton copula function

C(u, v, θ, δ) =1´
[

1´
!(

1´ ūθ
)´δ

+
(
1´ v̄θ

)´δ
´ 1

)´1/δ
]1/θ

where θ ě 1, δ ą 0, ū = 1´ u, v̄ = 1´ v .
Some properties:

§ One type of Archimedean copula.
§ λL = 2´1/δ does not depend on λU = 2´ 2´1/θ.
§ τ = 1´ 4

ş∞
0 sˆ (ϕ 1(s))2ds is calculated via Laplace transform.

Our interests:
§ The rank correlation and tail dependence in the model.
§ The convenience for interpretation.

We use the reparameterized copula C(u, v, λL, τ) = C(u, v, θ, δ).
* Note! any other copulas can be equally well used.
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The covariate-contingent copula model
ï The model

The marginal models
§ In principle, any combination of univariate marginal models can be

used.
§ In the continuous case, we use univariate model that each margin is

from the student t distribution.
The log likelihood

logL(Yu, Yv|Xu,Xv, λL, τ,βu,βv) =
n

ÿ

i=1
log c(ui, vi, λL, τ)

+ logLu(Yu|Xu,βu) + logLv(Yv|Xv,βv)

where all the parameters are connected with covariates via link
function ϕ(¨), (identity, log, logit, probit,...)

The marginal features βu = ϕ´1
βu

(Xuαu) βv = ϕ
´1
βv

(Xvαv)

The copula features λL = ϕ´1
λ ((Xu,Xv)αλ) τ = ϕ´1

τ ((Xu,Xv)ατ)
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The covariate-contingent copula model
ï The fast approach

Estimate each marginal model.
Conditional on each marginal model, estimate the copula features
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