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Today we are going to talk about...

1 Linear methods for regression

2 Model selection in linear models

3 Linear methods for classification
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Least squared estimation and Gaussian-Markov theorem

• β̂ has the smallest variance among all linear unbiased estimators.
• The restriction to unbiased estimators not necessary a wise one.
• The mean squared error (MSE) of an estimator θ̃ in estimating θ

MSE(θ̃) = E(θ̃´ θ)2 = Var(θ̃) + (Eθ̃´ θ)2

• The Gaussian-Markov theorem: the least squared estimators has the smallest
MSE of all unbiased estimators.

• But there may exist a biased estimator with small MSE, i.e sacrificing a little
biasness will reduce the variance.

• MSE is directly linked with prediction accuracy

E(Y0 ´ f̃(x0))
2 = σ2 + E(x 1β̃´ f(x0))

2 = σ2 +MSE(f̃(x0))

• So biased estimator may also improve prediction accuracy.
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Two purposes in linear modeling

• The prediction accuracy
• The interpretation
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Variable selection in linear models

• Best subset selection
Find the subset of size k = 0, 1, ...,p with smallest residual sum of squared.
It is eventually the procedure for searching for all possible subsets.

• Forward/backward stepwise selection
Start with intercept/full covariates and add/remove a covariate that improves
the fit.
The methods depend on how you initialize the first step (sequentially).

• Forward stagewise selection
Same as the forward stepwise selection.
Each step add a covariate that is most correlated with the residual.

• Bayesian variable selection
Assign a binary indicator I to each covariate.
Estimate the I: the probability of each covariate is included in the model.
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Variable selection in linear models

• Least Angle Regression: “Democratic” version of forward stepwise regression.
• Start without any regressors, i.e. β̂1 =, ...,= β̂p = 0
• Find a predictor xj that is most correlated with r = y´ ȳ
• Tuning the coefficient 0 ă βj ă β̀j (where β̀j is the OLS coefficient of the residual
r with xj) until you find another xk has as much correlation with current residuals
r with xj

• Now move βj and βk in the same way until another xl comes.
• Continue until all predictors come in.
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Variable selection in linear models
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Shrinkage methods: Ridge regression

• Set the arbitrary constrain(penalty)
řp
i=1 β

2
i ď t

• RSS = (y´ Xβ) 1(y´ Xβ) + λβ 1β

• The target:

β̂ = argminβ tRSSu

• β̂ = (X 1X+ λI)´1X 1y

• The no. of effective parameters

tr(H) = tr(X(X 1X+ λI)´1X 1) =
ÿp

j=1

d2
j

d2
j + λ

where dj ą 0 are the entries from the matrix D in singular value
decomposition of X

X = UDV 1
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Shrinkage methods: LASSO

• LASSO: least absolute shrinkage and selection operator
• Same as ridge regression but the constrain is now

ÿp

i=1
|βi| ď t

• There is not closed form of β̂.
• LASSO is a continuous subset selection routine

• LASSO shrunk the least squares coefficients to exactly zero (when t is sufficient
small) in order remove the effect the coefficients. Equivalent of variable selection.

• In Bayesian framework, LASSO is same to have a linear regression while the prior
of the coefficients are set as Laplace distribution.

• Grouped LASSO
• When the predictors X belong to different categories. It is desirable to shrink the

members together.
• The constrain is now

ÿL

l=1

?
pl||βl||2 ď t

where }βl} :=
a

β2
l1 + ¨ ¨ ¨+ β

2
lk is the Euclidean norm.
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Shrinkage or variable selection?

• Matters of personal taste.
• If interpretation is important, use variable selection
• If a lot of non-informative covariates used, shrinkage can be used.
• One may combine both shrinkage and variable selection methods.
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Classification with linear discriminant analysis

• Classification: find the decision boundaries.
• We want to know Pr(G = k|X = x). It reads the probability of G belongs to

group k conditional that X is x.
• We also know that sum of the probabilities is one a priori, i.e.

řK
k=1 = 1

• Let fk(x) is the conditional density of X
• Bayes theorem shows that

Pr(G = k|X = x) =
fk(x)πk

řK
l=1 fl(x)πl

• Knowing fk(x) implies Pr(G = k|X = x)

• Linear discriminant analysis is to model each fk(x) with multivariate Gaussian
while assuming the covariance matrix Σk are all of the same among all K classes.
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Logistic regression
ï The model

• It is essentially modeling the probability of K classes through linear function in x
with log odds rations

log Pr(G = k|X = x)

Pr(G = K|X = x)
= βk0 + β

1
kx

where k = 1, 2, ...,K´ 1.
• Some notes:

• There are K´ 1 log-odds, i.e. K´ 1 models in total.
• The probabilities should sum to one.
• When K = 2, only one model needed and the responses are binary.

• This is equivalent of

Pr(G = k|X = x) =
exp (βk0 + β

1
kx)

1 +
řK
l=1(βl0 + β

1
lx)
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Logistic regression
ï Fitting the model with maximum likelihood
• The idea: using conditional likelihood with multinomial distribution
• In the K = 2 case, it is binomial distribution with the likelihood as

l(β) =
N
ÿ

n=1
tyi log p(xi,β) + (1´ yi) log(1´ p(xi,β))u

=
N
ÿ

n=1
tyiβ

1xi ´ log(1 + expt1 + β 1xiu)u

• To obtain β̂, use Newton-Raphson algorithm

βnew = βold ´

(
B2l(β)

BβBβ 1

)´1
Bl(β)

Bβ

• LASSO can be used for variable selection

maxβ

!

l(β)´ λ
ÿp

j=1
|βj|

)

• The likelihood estimation for multinomial case can be done in a similar fashion.
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