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Overview

Likelihood
Bayesian inference

The Bernoulli model

The Normal model



The likelihood function

m Bernoulli trials: .
X1, ..., Xa|0 =~ Bern(9).

m Likelihood:

p(x1, ... xn|0) = p(x1|60) - p(xn|0)
0°(1—6)",

where s = Y7 ; x; is the number of successes in the Bernoulli trials
and f = n — s is the number of failures.

= Given the data xq, ..., x5, we may plot p(xy, ..., x5|0) as a function of 6.



The likelihood function from Bernoulli trials

Likelihood function of the Bernoulli model for different data

s=5,f=5 s=10 , f=10 =100, f=100 s500l,\f500
0 0.5 1 0.5 1 0 0.5 1 0 0.5 1
s=1,=9 s=2,f=8 s=3, =7 s=4,f=6
0 0.5 1 0.5 1 0 0.5 1 0 0.5 1
s=50, f=10 s=100, f=10 s=500, f=10 s=1000, =10
0 0.5 1 0.5 1 0 0.5 1 0 0.5 1
s=10, f=50 s=10, f=100 s=10, f=500 s=10, f=1000
0 0.5 1 0.5 1 0 0.5 1 0 0.5 1



Uncertainty and subjective probability

= Will the likelihood give us un idea of which values of 6 that should be
regarded as probable (in some sense)? Kind of, but ... No!

® In order to say that one value of 6 is more probable than another we
clearly must think of 6 as random. But 6 may be something that we
know is non-random, e.g. a fixed natural constant.

m Bayesian: doesn’t matter if 6 is fixed or random. What matters is
whether or not You know the value of 8. If 6 is uncertainty to You,
then You can assign a probability distribution to 6 which reflects Your
knowledge about 6. Subjective probability.



Learning from data - Bayes' theorem

m Given that you have formulated a distribution for 6, p(0), how can we
learn from data? That is, how do we make the transition from
p(0) — p(6|Data)? Bayes' theorem is the key.

m One form of Bayes’' theorem reads (A and B are events)

p(B|A)p(A)
p(B)
So that Bayes’ theorem 'reverses the conditioning’, i.e. takes us from
b(BIA) to p(A|B).
m Let A=0 and B = Data

p(A|B) =

_ p(Datal6)p(®)
p(6|Data) = = p(Data)

m Interpreting the likelihood function as a probability density for 0 is just
as wrong as ignoring the factor p(A)/p(B) in Bayes' theorem.



Generalized Bayes' theorem

m From your basic statistics textbook:

1my _ P(BlA)p(A) _  p(BJA)p(A)
PAIE) p(B) Lic1 p(BJA))p(A)

m Let 61, ..., 0 be k different values on a parameter 6. Bayes' Theorem:

p(Datal0i)p(6;) _  p(Datal6;)p(6;)
p(Data) Yf_1 p(Datal6;)p(6;)

p(6;|Data) =

m If 0 takes on a continuum of values

p(Datal6)p(6)
Jo p(Data|0)p(0)d6’

p(6|Data) =



The joy of ignoring a normalizing constant

m When Data is known, p(Data) in Bayes' theorem is just a constant
that makes p(0|Data) integrate to one. Example: x ~ N(u, 0?)

plx) = (270%) 2 exp |~ 1 (= ]

m We may write
1 2
po) wop [~ b= 7.
= Short form of Bayes' theorem
p(6|Data) o« p(Data|0)p(6)

or
Posterior o< Likelihood - Prior



Normalization constant is not important

lllustration that the normalization constant is unimportant

N(ll,oz) density with normalization constant

N(u,cz) density without normalization constant




Bayesian updating

m Suppose: you already have x; x, ..., x, data points, and the
corresponding posterior p(0]x1, ..., Xn)

= Now, a fresh additional data point x,.1 arrives.

m The posterior based on all available data is
p(O|x1,-.. Xnt1) % p(xnt+1]60, x1, ..., xn) p(O] X1, ...\ Xn)-

m The following are therefore equivalent:

m Analyzing the likelihood of all data xj ..., x,4+1 with the prior based on
no data p(6)

= Analyzing the likelihood of the fresh data point x,;1 with the 'prior’
equal to the posterior based on the old data p(0|xy, ..., xp)-

m Yesterday's posterior is today's prior.



Bernoulli trials - Beta prior

= Model: .
X1, ey Xn |0 ’rl\q Bern(0)
m Prior:
0 ~ Beta(a, B)
(@ B) a1 p—1
PY) =~y 11—y for0 <y <1
W)= tryr” Y
m Posterior

p(O|x1, ..., xn) o p(x1,..., xa|0)p(0)
= 0°(1—-0)' 0t (1—0)f "
95+a—1(1 _ e)f—&-ﬁ—l_

m But this is recognized as proportional to the Beta(a + s, 5+ f)
density. That is, the prior-to-posterior mapping reads

0 ~ Beta(w, B) =57 0xq, ..., X, ~ Beta(a + s, p+ f).



Bernoulli example: spam emails

m George has gone through his collection of 4601 e-mails. He classified
1813 of them to be spam.

m Let x; = 1 if i:th email is spam. Assume x;|6 i Bernoulli(0) and
6 ~ Beta(a, B).
= Posterior
0|x ~ Beta(a + 1813, p + 2788)



Spam data: The effect of different priors
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Spam data: Posterior co

nce

Prior: Beta(1,1)

Lower bound 95% HPD interval
0.8 = Upper bound 95% HPD interval
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Normal data with known variance - uniform prior

m Model: »
X1, ...,x,,|9,02 ~ N(G,O'z).
m Prior:
p(0) «x ¢
m Likelihood (see Technical Appendix A):
p(xi, ... xn|0,0%) = TIP;(27102) 12 exp [—%(Xi —9)2]

1

exp [—m(e - 2)2] :

m Posterior
O|x1, ..., Xn ~ N()‘(,(TQ/n)



Normal with known variance - normal prior

m Prior
0 ~ N(po, )

m Posterior (see Technical Appendix A)
p(B|x1, ... xn) &< p(x1,....xa|0,0°%)p(6)

o N(6lpn T2),
where
1 _n 1
02 T

and



Normal with known variance - normal prior, cont.

0 ~ N(po, 18) =5 0|x ~ N(pp, T2).

Posterior precision = Data precision + Prior precision

Posterior mean =

Data precision Prior precision .
Posterior precision (0313 Mean) + poce et recision (1 rior mean)



Overview Lecture 2

Conjugate priors
Poisson model

"Non-Informative’ priors

Jeffreys’ prior



Conjugate priors

= Normal likelihood: Normal prior—Normal posterior. (posterior belongs
to the same distribution family as prior)

m Binomial likelihood: Beta prior—Beta posterior.

u Conjugate priors: Let F = {p(y|0),60 € O} be a class of sampling
distributions. A family of distributions P is conjugate for F if

p(0) € P= p(O|x) € P

holds for all p(x|0) € F.

m Natural conjugate prior: p(6) = c - p(y1, ..., yn|0) for some constant
¢, i.e. the prior is of the same functional form as the likelihood.



Poisson model

m Likelihood from iid Poisson sample y = (y1, ..., yn)

p(r10) = [[T7, p(1il0)] o 6F 47 exp(—6m),

so that the sum of counts }_7_; y; is a sufficient statistic for 6.

m Natural conjugate prior for Poisson parameter 6
p(0) o< 0° ! exp(—0B) x Gamma(a, B)

which contains the info: @ — 1 counts in B observations.



Poisson model, cont.

m Posterior for Poisson parameter 6. Multiplying the poisson likelihood
and the Gamma prior gives the posterior

POl oyn) o« [TT0y p(il6)] p(6)
o BLi=1Yi exp(—0n)6* 1 exp(—6p)
= 0" R exp[—0(B + )],

which is proportional to the Gamma(a + Y7 yi, p + n) distribution.

m In summary

Model: y1, ..., y|0 < Po(8)
Prior: 6 ~ Gamma(a, B)

Posterior: 0|y1, ..., yn ~ Gamma(a + 27:1 vi. B+ n).



Poisson example - Number of bomb hits in London

n=>576, ) | | yi=229-04211-1493%2+35%3+7#4+1-5=537.
Average number of hits per region=y = 537/576 ~ 0.9323.
p(6ly) o« 674557 exp[ (B + 576)]

n .
E(0]y) = "‘ZZT?” ~ j ~ 0.9323,

and

(e EYay\Y? (a2 (537)1/2
SD("’”‘<<ﬁ+n>2) = Grn st

if « and B are small compared to )/ ; y; and n.

~ 0.0402.




Poisson bomb hits in London

Analysis of bomb hits in regions of London — Poisson model with Gamma prior
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Poisson example - posterior probability intervals

= Bayesian 95% interval: the probability that the unknown parameter 6
lies in the interval is 0.95. What a relief!

m Approximate 95% credible interval for 6 (for small « and B):
E(0]y) £1.96 - SD(0]y) = [0.8535;1.0111]

m An exact 95% equal-tail interval is [0.8550; 1.0125] (assuming
a=p=0)

m An exact Highest Posterior Density (HPD) interval is [0.8525; 1.0144].
Obtained numerically, assuming &« = 8 = 0.



lllustration of different interval types

Symmetric distribution Skewed distribution
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Non-informative priors

... do not exist!
. may be improper and still lead to proper posterior
Regularization priors

Ideal communication. Present the posterior distributions for all
possible priors.

Practical communication - Reference priors.

Cannot demand that users specify priors on high-dimensional in detail.
Model the prior in terms of a few hyperparameters.

Subjective consensus: when extreme priors give essentially the same
posterior. This will happen, given enough data as

p(8ly) — N[0, 17] for all p(6) as n — co.



Jeffreys’ prior

= A common non-informative prior is Jeffreys' prior
1/2
p(6) = [1(0)]"",
where

J(6) = —Eypo [—dz '“d’;(zy'g)}

is the expected Fisher information.



Jeffreys’ prior for Bernoulli trial data

Y1, Ynl0 "','\5’ Bern(6).
Inp(y|0) =slnf+fIn(1—6)

dinp(yl6) s f
6 (1-0)
d*Inp(yle) s f
462 02 (1-0)2
J(G) — E)/|9(s) + Ey\e(f) _ nb n(l _9) _ n

62 (1—6)2 02 (1—-6)2 6(1-0)
Thus, the Jeffreys' prior is

p(0) = [J(0)|*? « 671/2(1 — 0)"V/2 o Beta(6]1/2,1/2).



Jeffreys’ prior Binomial vs Negative binomial sampling

m Bernoulli experiment: Perform n independent trials with success
probabilty 6 and count the number of successes. Here

y|6 ~ Bin(0)

m Inverse Bernoulli experiment: Perform independent trials with success
probabilty 6 until you have observed y successes. Here

y|6 ~ NegBin(0)

m Exercise: Suppose you performed both of the two experiments and
that in both cases you ended up doing n trials and observed y
successes. Show that the likelihood function conveys the same
information on 6 in both cases, but that Jeffreys prior is not the same
in both models. Is this reasonable?



Properties of Jeffreys prior

® Invariant to 1:1 transformations of 6. Doesn’t matter which
parametrization we derive the prior, it always contains the same info.

= Two models with identical likelihood functions (up to constant) can
yield different Jeffreys' prior. Jeffreys' prior does not respect the
likelihood principle. The crux of the matter is the expectation with
respect to the sampling distribution.

m Jeffreys’ prior may be a very complicated (non-conjugate) distribution.

m Problematic in multivariate problems. Dubious results in many
standard models.



Lecture overview

Multiparameter models
Marginalization
Normal model with unknown variance

Bayesian analysis of multinomial data

Bayesian analysis of multivariate normal data



Marginalization

Models usually contains several parameter 61,05, .... Examples:
jid . .

X; o N(G,(Tz); multiple regression ...

The Bayesian computes the joint posterior distribution

p(61,02,...,05ly) < p(y|61,02,...,0,)p(61,62, ..., 6p).

. or in vector form:
p(0) o< p(y|6)p(6).

Complicated to graph the joint posterior.
Some of the parameters may not be of direct interest (nuisance
parameters), but are nevertheless needed in the model.
No problem: just integrate them out (marginalize with respect to,
average over) all nuisance parameters.
Example: 6 = (01, 602)’, where 6, is a nuisance. We are interested in
the marginal posterior of 6;

p(Orly) = / p(61, 621y)d, = / p(61]62, y)p(6aly)d6>.



Normal model with unknown variance - Uniform prior

= Model: y
Voo Yo ™~ N(‘u,az)
m Prior
p(i,0%) e (0%) 7
m Posterior:
_ 0
P’|‘72-y ~ N (y, 7)
2y ~Inv — x3(n—1,s%),
where

o Yialyi —7)?
n—1

S

is the usual sample variance.



Normal model with unknown variance - Uniform prior, cont.

m Simulating the posterior of the normal model with non-informative
prior:

1.
2.

3.
4.

Draw X ~ x2(n—1)

2
Compute 02 = % (this a draw from Inv-x?(n — 1, 52))
Draw a u from N (}7, ‘T—nz) conditional on the previous draw ¢

Repeat step 1-3 many times.

m The sampling is implemented in the R program NormalNonInfoPrior.R

m We may derive the marginal posterior analytically as

y~tor (7.5
]’l,y n—1 yln ]



Multinomial model with Dirichlet prior

m Data: y = (y1,...yk), where yx counts the number of observations in
the kth category. Y r_; yx = n. Example: brand choices.
m Multinomial model:

K K
p(y|6) o< [ [ 0}, where ) 6; =1.
k=1 k=1
Conjugate prior: Dirichlet(ay, ..., ax)
K
p(0) Haj‘j_l.

m Moments of § = (61, ...,0k)" ~ Dirichlet(ay, ..., ak)

o
Bl = Y
o - B0

= Note that YK | a, is the precision (inverse variance).



Multinomial model with Dirichlet prior, cont.

® 'Non-informative: &3 = ... = ax = 1 (uniform and proper).
m Simulating from the Dirichlet distribution:

m Generate x; ~ Gamma(ay, B), ..., xx ~ Gamma(ay, B), independently.
Any B will do as long it is the same for all x;.

m Compute y;, = Xk/(Zszl Xj)-
®m y = (y1,...,yk) is a draw from the Dirichlet(aq, ..., ax ) distribution.

m Prior-to-Posterior updating:
Model: vy = (y1,...yx) ~ Multin(n; 0y, ..., Ox)

Prior : 0= (91, ey QK) ~ Dil‘iChlet(le, ey OCK)
Posterior : 6|y ~ Dirichlet(a; + y1, ..., ax + yk ).



Multivariate normal - known covariance matrix

m Model: .
Vi Yn ~ Np(p, 2)

where X is a known covariance matrix.

m Density

Py ) = 2 ep (~5 0= /= (= )

m Likelihood:

n

i=1

trZ_lsy)

(yi— )= yi— #))

Nl = N =

p(Yi, o Yn|p, X) o |Z.|_”/2 exp <_
— Iz " eup

where S, = Y7, (yi — 1) (vi — p)'.



Multivariate normal - known covariance matrix, cont.

m Prior:
p~ Np(po, Mo)
m Posterior:
p~ N(pn, An)
where

o= (Ag' +nZ7h) 7 (Ag o + nE71)
A=At 4+t
m Note how the posterior mean is (matrix) weighted average of prior and

data information.

m Noninformative prior: let the precision go to zero: A1 — 0.



Multivariate normal - Conjugate prior

m Conjugate prior is Normal-IW (g, o, Ao, o)

X~ Inv — Wishart(Ao, 1/0)
IZ ~ N(po, 15 '2)

m Density:

3 1
Iz [(vo+d)/2+1] exp (—Etr(AOZ_l) - %(P‘ — o) T (u - V0)>

m Posterior is also Normal IW

Ko n
]/anK0+nl/lo+K0+ny
Kn =Ko+ n
Vp=1Vg+n
Kon _ _ ’
Ap=No+S+ (¥ — mo) (¥ — po)

Ko+ n



Lecture overview

m Bayesian prediction

m Decision theory



= We may use the estimated model for forecasting a future observation

y.
m Posterior predictive distribution (y denotes available data at the time
of forecasting)

p(7ly) = /9 p(710. y)p(8ly)do = /9 p(710)p(6]y)d6

where the last step holds if p(7|0,y) = p(7]6).

m The uncertainty that comes from not knowing 6 is represented in
p(7ly) by averaging over p(6ly).



Prediction Bernoulli data

m Let y =Y,y and ¥ the outcome of the next trial
p7 = 1ly) = [ b7 = e)p(ely)o
x+y
= Op(Oly)dd = Ey, () = —————.
| oetely)ae = £, () = S5
= Uniform prior (¢ = p = 1)




Prediction Normal data with known variance

m Assume the uniform prior p(8) o c.

p(7ly) = /9 p(710)p(6]y)d6
where

0ly ~ N(y,0%/n)
yle ~ N(9,(72)



Simulate from the predictive distribution - Normal model

Generate a posterior draw of 8 (1)) from N(y, 2/ n)
Generate a draw of 7 (7(1)) from N(() ¢2) (note the mean)

Repeat steps 1 and 2 a large number of times (N) with the result:

m Sequence of posterior draws: 61, ..., 6(N)

= Sequence of predictive draws: (), .. (M),



Predictive distribution - Normal model and uniform prior

01) =y + ¢, where e) ~ N(0,02/n). (Step 1).
7 =9 1 (1) where v ~ N(0,0?). (Step 2).
g =y 4 4 @),

¢ and v(®) are independent.

The sum of two normal random variables follows a normal distribution,
so y follows a normal distribution with

E(yly) = E@ly) =7y

o? 1
V(yly) = 7+a2 =02 (1+;).

Note that the estimation uncertainty (02/n) is typically much less
important than the intrinsic population uncertainty, .



Predictive distribution - Normal model and normal prior

m It easy to see that the predictive distribution is normal.
m The mean can be obtained from

Eyo(7]0) =0
and then remove the conditioning on 6 by averaging over 0
E(y]y) = Eg|,(0) = pn (Posterior mean of ).

m The predictive variance of y can be obtained from the conditional
variance formula

V(7ly) = Egy[Vy1e(710)] + Vo, [Eye(710)]
= Ey (%) + Vg, (6)
o? + 12

(Population variance + Posterior variance of ).

® In summary:
yly ~ N(pn, 0* + 13).



Decision Theory

m Let 6 be an unknown quantity. State of nature. Examples: Future
inflation, Global temperature, Disease.

m Let a € A be an action. Ex: Interest rate, Energy tax, Operation.

m Choosing action a when state of nature turns out to be 6 gives utility

U(a,0)
m Alternatively loss L(a,0) = —U(a,0).
| 6 6>

L(al, 91) L(al, 92)
L(32,91) L(32,92)

m Loss table: a

m Example utility functions:
m Linear: L(a,0) = |a— 0]
» Quadratic: L(a,0) = (a—6)?

m Lin-Lin:
i <
L(2,6) = a ?fa_e
o ifa>"0



Optimal decision

m Ad hoc decision rules:

m Minimax. Choose the decision that minimizes the maximum loss.
m Minimax-regret: Choose the decision rule that gives you least regret
when you eventually find out the true value of 6.

m Bayesian axiomatic theory gives you the rule: Choose the action that
maximizes the (posterior) expected utility:
payes — ATgMaXzc A Ep(9|y) [L(a' 9)]'
where E,g),) denotes the posterior expectation.
m Using simulated draws 8 9 oM from p(Oly) :

N .
Epo)y)[L(2,0)] ~ N1 L(a,60)

i=1

m Separation principle: The analysis of uncertainty (i.e. the posterior of
6) is completely separated from the utilities of the choices.



Point and interval estimation

m Choosing a point estimator is a decision problem.
m Which to choose: posterior median, mean or mode?
m It depends on your loss function:

Linear loss — Posterior median is optimal

Quadratic loss — Posterior mean is optimal

Lin-Lin loss — ¢1/(c1 + ¢2) quantile of the posterior is optimal
Zero-one loss — Posterior mode is optimal

m Similar analysis can be used to select interval type: symmetric or
HPD?



Combining expert judgement

m Available: K unbiased expert forecast/judgement: y = (y1,y2, ..., yx)’
and
yl6 ~ N(6-1,%)
where X is assumed to be known.
m Assuming a uniform prior for 8, the posterior distribution is of the form

Oy ~ N(w'y, ?)
where
1/ . Z*l
1.1

1
1’0_\/1'-2—1-1

m Weights can be negative, and it makes sense!

m Correlation between expert’s forecasts are important. A poor expert
can ge a sizeable weight if she is negatively correlated with the rest.

m Estimate ¥ with past forecast errors. Difficulty: estimate X precisely.
A decent prior on X can help!

w
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