## Introduction to Bayesian Network

Jiafei Han
Yanyue Wang

## Outlines

- Introduction
- Bayesian Networks
- Probabilistic Inference
- Structure and Parameter learning


## Introduction

## The Alarm Example

- A burglar alarm
- Burglary or earthquakes
- Two neighbors (John, Mary)
- Given evidence about who has and hasn't called, estimate the probability of a burglary


## The Alarm Example

- Represent problem using 5 binary variables:
- $\mathrm{B}=$ a burglary occurs at your house
- $\mathrm{E}=$ an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- $\mathrm{M}=$ Mary calls to report the alarm
- What is $\mathrm{P}(\mathrm{B} \mid \mathrm{M})$ ?
- We can use the full joint distribution to answer this question
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?


## Bayesian Networks

- Definition: $\mathbf{B N}=(\mathrm{DAG}, \mathrm{CPD})$
- DAG: directed acyclic graph (BN’s structure)
- Nodes: random variables $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- Arcs: indicate probabilistic dependencies between nodes
- CPD: conditional probability distribution (BN's parameters)
$P\left(X_{i} \mid \pi\left(X_{i}\right)\right)$, where $\pi\left(X_{i}\right)$ is the set of all parent nodes of $X_{i}$
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)$
$=\prod_{i} P\left(X_{i} \mid \pi\left(X_{i}\right)\right)$
- Root nodes are a special case - no parents, so just use priors in CPD:

$$
\pi\left(X_{i}\right)=\varnothing, \text { so } P\left(X_{i} \mid \pi\left(X_{i}\right)\right)=P\left(X_{i}\right)
$$

- Why Bayesian Networks are effective?
- before, requires $2^{\mathrm{N}}$
- after, requires $N \cdot 2^{K}$


## Constructing a BN: Step 1

- Order the variables in terms of causality (may be a partial order).
- e.g., $\{\mathrm{E}, \mathrm{B}\}$-> $\{\mathrm{A}\}$-> $\{\mathrm{J}, \mathrm{M}\}$
- Use these assumptions to create the graph structure of the Bayesian network.


## The Resulting Bayesian Network

- DAG



## Constructing a BN: Step 2

- Fill in conditional probability tables (CPTs)
- One for each node
- $2^{p}$ entries, where $p$ is the number of parents



## The alarm example



## The alarm example



- What are they?
- a network-based framework, uncertainty
- Where did BNs come from?
- artificial intelligence, decision analysis, and statistic communities
- What are they used for?
- Intelligent decision aids, data fusion, feature recognition, intelligent diagnostic aids, automated free text understanding, data mining


## Bayesian Network Inference

■ The process of inference:

Known<br>Information

## Unknown <br> Probability

- The process of inference:

Joint Distribution


Marginalized Distribution
(Complex) Algorithms
(Concise)

## Bayesian Network Inference

(1)Variable Elimination (VE)

■ Purpose: Finding the posterior distribution

- Method: Factorizing the probability distribution
$\square$ Simplify the inference
DExample $\quad \mathrm{P}(A) \quad \mathrm{P}(\mathrm{B} \mid \mathrm{A}) \quad \mathrm{P}(\mathrm{C} \mid \mathrm{B}) \quad \mathrm{P}(\mathrm{D} \mid \mathrm{C})$

$$
\begin{aligned}
& \text { A } \rightarrow \text { (D) }-\begin{array}{c}
\text { A,B,C,D are binary } \\
\text { variables }
\end{array} \\
& P(\mathrm{D})=\sum_{A, B, C} P(A, B, C, D)=\sum_{A, B, C} P(A) P(B \mid \mathrm{A}) \mathrm{P}(\mathrm{C} \mid \mathrm{B}) \mathrm{P}(\mathrm{D} \mid \mathrm{C})= \\
& \sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)
\end{aligned}
$$

-Calculating the posterior

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{D}=0)=\frac{h(A)}{\sum_{A} h(A)} \quad \mathrm{h}(\mathrm{~A})=\sum_{B, C} P(B, C, D=0)
$$

Bayesian Network Inference


# How to make inference? 

## How to calculate the posterior $\mathrm{P}(\mathrm{A} \mid \mathrm{X})$ ?

## Bayesian Network Inference

(2) Clique Tree Propagation (CTP)

- Purpose: Calculating the posterior

■ Method: Sharing the steps
■ Simplify the inference


BN


Clique tree

## Bayesian Network Inference

## How about this network?



## Bayesian Network Inference

(3)Markov chain Monte Carlo (MCMC)

■Markov Chain: memoryless
Monte Carlo algorithms: random sampling algorithms
■ An approximate inference $\square$ An approximate estimation
DExample: A,B,C,D are binary variables.


Calculate the posterior: $\mathrm{P}(\mathrm{A}=1 \mid \mathrm{D}=1)$
Simulating the samples:
$\mathrm{D}_{1}=\{\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=0, \mathrm{D}=1\}$
$\mathrm{D}_{2}=\{\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=1\}$
$\mathrm{D}_{\mathrm{n}}=\{\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1, \mathrm{D}=1\}$

- $\mathrm{P}(\mathrm{A}=1 \mid \mathrm{D}=1)=$ frequency of $\mathrm{A}=1$


## Now, we have known

What is BN?
■Why we use BN?
■How to compute the posterior that we interest in?

- Now there is a question : If we have a dataset, how to construct a Bayesian Network based on samples?


## Bayesian Network Learning

■ Structure is known:
■Structure is unknown:

## Bayesian Network Learning

■Structure is known: Parameter Learning
■Structure is unknown: Structure Learning

## Bayesian Network Learning

■ Structure is known: Parameter Learning
(1)Maximum Likelihood Estimation(MLE)
(2)Bayesian Estimation

## Bayesian Network Learning

■Structure is known: Parameter Learning
■Structure is unknown: Structure Learning

Step 1: Model selection (scoring function etc.)

Step 2: Model optimization

Thanks!

