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Introduction 

The Alarm Example 

 A burglar alarm  
 Burglary or earthquakes 
 Two neighbors (John, Mary)  
 Given evidence about who has and hasn’t called, estimate 

the probability of a burglary 



The Alarm Example 

 Represent problem using 5 binary variables: 
▫ B = a burglary occurs at your house 
▫ E = an earthquake occurs at your house 
▫ A = the alarm goes off 
▫ J  = John calls to report the alarm 
▫ M = Mary calls to report the alarm 

 
 What is P(B | M) ?   

 
▫ We can use the full joint distribution to answer this question 
 Requires 25 = 32 probabilities 

 
▫ Can we use prior domain knowledge to come up with a Bayesian 

network that requires fewer probabilities? 
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Bayesian Networks 
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 Definition: BN = (DAG, CPD)  
– DAG: directed acyclic graph (BN’s structure) 

• Nodes: random variables 𝑋1,𝑋2, … ,𝑋𝑛  
• Arcs: indicate probabilistic dependencies between 

nodes  
 

– CPD: conditional probability distribution (BN’s parameters) 
 

 
 

( | ( )),  where ( )is the set of all parent nodes of Xi i i iP X X Xπ π



 
 𝑃 𝑋1,𝑋2, … ,𝑋𝑛 = 𝑃 𝑋1  𝑃 𝑋2 𝑋1 …𝑃 𝑋𝑛|𝑋1,𝑋2, … ,𝑋𝑛−1  
= ∏ 𝑃(𝑋𝑖  | π(𝑋𝑖))𝑖  

 
 Root nodes are a special case – no parents, so just use priors in 

CPD: 
 
 Why Bayesian Networks are effective? 
    - before, requires 2N 

    - after, requires  
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2KN ⋅

( ) ,  so ( | ( )) ( )i i i iX P X X P Xπ π=∅ =



Constructing a BN: Step 1 

 Order the variables in terms of causality (may be a 
partial order). 
▫ e.g., {E, B} -> {A} -> {J, M} 

  
 Use these assumptions to create the graph structure of 

the Bayesian network. 
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The Resulting Bayesian Network 
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 DAG 



Constructing a BN: Step 2 
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 Fill in conditional probability tables 
(CPTs) 
▫ One for each node 
▫ 2𝑝 entries, where 𝑝 is the number of parents 
 



The alarm example 
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Shouldn’t these add up to 1? 

𝑃 ¬𝐴 𝐵,𝐸 = 1 − 𝑃 𝐴 𝐵,𝐸
= 1 − 0.95 = 0.05 



The alarm example 
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 What are they? 
▫ a network-based framework, uncertainty 

 
 Where did BNs come from? 
▫ artificial intelligence, decision analysis, and statistic 

communities 
 

 What are they used for? 
▫ Intelligent decision aids, data fusion, feature recognition, 

intelligent diagnostic aids, automated free text 
understanding, data mining 
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Bayesian Network Inference 

 
   Joint Distribution 

 

 
 Marginalized Distribution  
 

 
(Complex)  (Concise) Algorithms 

         Known                                Unknown 
     Information                            Probability 

 The process of inference: 

 The process of inference: 



(1)Variable Elimination (VE) 
        

Purpose: Finding the posterior distribution 
Method: Factorizing the probability distribution 
Simplify the  inference 
 
Example 

 
 
 
   𝑃 D = ∑ 𝑃 𝐴,𝐵,𝐶,𝐷𝐴,𝐵,𝐶 = ∑ 𝑃 𝐴 𝑃 𝐵 A P C B P D C𝐴,𝐵,𝐶 = 
       
        ∑ 𝑃 𝐷 𝐶𝐶 ∑ 𝑃 𝐶 𝐵𝐵 ∑ 𝑃 𝐴 𝑃 𝐵 𝐴𝐴  
 
Calculating the posterior 

         

       P A D = 0 = ℎ(𝐴)
∑ ℎ(𝐴)𝐴

                   h A = ∑ 𝑃(𝐵,𝐶,𝐷 = 0)𝐵,𝐶              
 

 

A,B,C,D are binary 
variables 

Bayesian Network Inference 



How to make 
inference?  

How to calculate  
the posterior 
P(A|X)?  

Bayesian Network Inference 



(2) Clique Tree Propagation (CTP) 
Purpose: Calculating the posterior 
Method: Sharing the steps 
Simplify the  inference  

 
 

BN                         Clique tree        

Bayesian Network Inference 



How about this network?  

Bayesian Network Inference 



(3)Markov chain Monte Carlo (MCMC) 
Markov Chain:  memoryless  

     Monte Carlo algorithms: random sampling algorithms 
An approximate inference             An approximate 

estimation 
Example: A,B,C,D are binary variables.  

                                       Calculate the posterior:   P(A=1|D=1) 
                                               

B 
D 

C 

A 
Simulating the samples： 
D1={A=1,B=1,C=0,D=1} 
D2={A=0,B=0,C=0,D=1} 
                      ···                     
Dn={A=1,B=1,C=1,D=1} 
 P(A=1|D=1)=frequency of A=1 
 
 
  

A,B,C,D are binary variables 

Bayesian Network Inference 



Now, we have known  
 
What is BN? 
Why we use BN? 
How to compute the posterior that we interest in?  

 
Now there is a question : If we have a dataset, how to 

construct a Bayesian Network based on samples?  



Bayesian Network Learning 

 
 

Structure is known: 
Structure is unknown: Structure Learning 

 
 



Bayesian Network Learning 

 
 

Structure is known: Parameter Learning 
Structure is unknown: Structure Learning 

 



Bayesian Network Learning 

 
 

Structure is known: Parameter Learning 
 
(1)Maximum Likelihood Estimation(MLE) 
           
(2)Bayesian Estimation 



Bayesian Network Learning 

 
 

Structure is known: Parameter Learning 
Structure is unknown: Structure Learning 
 
Step 1: Model selection (scoring function etc.) 
 
Step 2: Model optimization 

 



Thanks! 
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