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 An example  

 

 

 

 

 

 

 



Hierarchical Mixture of Experts 

 “soft” partition: tree splits 
are probabilistic 

 Splits can be multiway 

 A linear model is fit in 

each terminal node 

Soft decision tree: Takes a weighted (gating) average of all 
leaves (experts), as opposed to using a single path and a 

single leaf 
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 Expert Network Output 
 At the leaves of trees 

 

for each expert: 

)( xUf ijij  output of the expert 

Model for response variable 

 

 



Expert Network Output 

 For each expert, assume the true output y is chosen 
from a distribution P with parameters  
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Regression: The Gaussian linear regression model is used: 
 

 
Classification:  The linear logistic regression model is used: 
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 Gating network output 
 

 At the nonterminal of the tree 

top level:         other level: 
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 Gating Network Output 
 

 At the non-leaves nodes 

top node:         other nodes: 
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Hierarchical Mixture of Experts 

𝜇 = 𝑔𝑖
𝑖

 𝑔𝑗|𝑖𝑓 𝑈𝑖𝑗𝑥
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Probability model 

 

 Therefore, for data set  X = 𝑥 𝑡 , 𝑦 𝑡
1

𝑁
  , the 

total probability of generating y from x is 

given by 

 



E-M algorithm 

 Introduce latent variables zij which have an 
interpretation as the labels that corresponds 

to the experts. 

 The probability model can be simplified with 

the knowledge of latent variables  
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E-M algorithm 

 Log-likelihood function: 
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E-M algorithm 
 

Define posterior probabilities … and  we get …                         

 



E-M algorithm 
 

 The E-step 
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E-M algorithm 

 The M-step 
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Results 

 Simulated data of a four-joint robot arm 
moving in three-dimensional space 

EM 



Results 



Thank you 

Reference: Michael.I.Jordan, Hierarchical mixtures of experts and the EM 
algorithm, Neural Computation, 1994 
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