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i Hierarchical Mixture of Experts

Soft decision tree: Takes a weighted (gating) average of all
leaves (experts), as opposed to using a single path and a

single leaf .

AN = “soft” partition: tree splits
are probabilistic
N N = Splits can be multiway
= A linear model is fit in
o\ oo o\ o each terminal node
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Expert Network Output

= At the leaves of trees

for each expert:

Hij = fU i X)<

outputof the expert

T

Model for response variable




i Expert Network Output

= For each expert, assume the true output yis chosen
from a distribution P with parameters 0.

Y ~ P(y[x,6;)

Regression: The Gaussian linear regression model is used:
T 2
Y =pf;x+¢&¢6~N(0,0;)
Classification: The linear logistic regression model is used:

Plr=1]x6,)= —"
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iGating network output

= At the nonterminal of the tree

top level: other level:
§i=ViTX gij:Vi}-X
o exp(&) g = exp(&;; )
% = > exp(&,) T exp(&y)
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‘LGating Network Output

= At the non-leaves nodes
top node: other nodes:

/U:Zgiﬂi H; :Zgjﬁ/uij
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‘L Hierarchical Mixture of Experts
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i Probability model

= Therefore, for data set X = {x(t),y(t)}llv , the

total probability of generating y from xis
given by

P(Y‘Xﬁ) = HZ&M (x""r)zg&ﬂ} (x’vrff')Pm (y|x,6{j)
{ i J
In P(Y‘Xﬁ) :ZIH (Zgr(f) (xﬂvf)zgffl? (x,v”.) PU) (yx,a;)]
{ [ J



i E-M algorithm

= Introduce latent variables z; which have an
interpretation as the labels that corresponds
to the experts.

= The probability model can be simplified with
the knowledge of latent variables

zy!
P(y, 20 x,0) = gg P (y*) =TT Tig® 9Py (v)]
i



i E-M algorithm

= Log-likelihood function:

LG Y) =3 20N g® +Ing®¥ +In P, (y©)

t 0]




‘_L E-M algorithm

Define posterior probabilities ... and we get ...

o 99alu(y)

o u{t] z _
T X 225 951iPii(y) E["’ : |"'1IL ] — fl{t-}

h; = gi ZJ ff'_;’l-ipéj(}r)
- X 2 951 Pi(y)

A gi1ilii(y)
o 2] ff'J'l'iPiJ(}’)



‘_L E-M algorithm

= The E-step
00, 07) = E.(L(0; 7)) = 7 7 7 h{in g +1n g% + 1n P, ()]

where we have used the fact that:

EEDI] = P9 = 1y, <, 60))




‘L E-M algorithm

= The M-step

/" = argmax y h{1n P, (y")
0;; t

v/ = argmax ) ) A 1n gt
Vi t  k

v

+1 (¢) (¢) (¢)
;= arg maXZth Zhlk In g,
Vij t k /



i Results

= Simulated data of a four-joint robot arm
moving in three-dimensional space

Architecture Relative Error | # Epochs
linear 1 1
backprop 09 5,500
EM <—| HME ( Algorithm 1) 10 B4
HME { Algorithm 2) . 30
CART AT NA
CART (linear) 13 NA
MARS 16 NA
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Thank you

Reference: Michael.l.Jordan, Hierarchical mixtures of experts and the EM
algorithm, Neural Computation, 1994
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