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Chapter2 
Bayesian single-parameter 

models 

By:夏立&张博 



    In this chapter, we consider four fundamental and widely 

used one-dimensional models—the binomial, normal, Poisson, 

and exponential—and at the same time introduce important 

concepts and computational methods for Bayesian data 

analysis. 



2.1Estimating a probability from binomial data 

Binomial sampling model： ( | ) B i n ( | , ) (1 )
y n y

n
p y y n

y

   


 
   

 

Prior distribution： ( 0 , 1 )U

Posterior distribution： ( | ) (1 )
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   In the present case, we can recognize Posterior distribution as the 

unnormalized form of the beta distribution： 

| B e t a ( 1 , 1 )y y n y   

(2.1) 



But why is      assumed to have a （prior）uniform distribution on             [ 0 , 1 ]

In his famous paper, published in 1763, Bayes sought, in our notation, the 

probability                      ；his solution was based on a physical analogy of  a 

probability space to a rectangular table (such as a billiard table): 

1. (Prior distribution) A ball W is randomly thrown (according to a uniform 

distribution on the table). The horizontal position of the ball on the table is    , 

expressed as a fraction of the table width. 

2. (Likelihood) A ball O is randomly thrown n times. The value of     is the 

number of times O lands to the right of W . 

Thus,    is assumed to have a (prior) uniform distribution on [0, 1].  
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Using direct probability calculations which he derived in the paper, Bayes 

then obtained 
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Bayes succeeded in evaluating the denominator, showing that 
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This calculation shows that all possible values of     are equally likely a priori. y



In analyzing the binomial model, Laplace also used the uniform prior distribution. His 

first serious application was to estimate the proportion of girl births in a population. 

A total of 241,945 girls and 251,527 boys were born in Paris from 1745 to 1770. 

Letting      be the probability that any birth is female, Laplace showed that 
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and so he was ‘morally certain’ that 0 .5 

The currently accepted value of the proportion of female births in large  

European-race populations is 0.485. 



Prediction 

Letting       denote the result of a new trial, exchangeable with the first      , y n
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from the properties of the beta distribution. 



2.2 Posterior as compromise between data and prior 
information 

The process of Bayesian inference involves passing from a prior distribution,           ,to a 

posterior distribution,             ,and it is natural to expect that some general relations might 

hold between these two distributions. For example, we might expect that, because the 

posterior distribution incorporates the information from the data, it will be less variable than 

the prior distribution. This notion is formalized in the second of the following expressions: 
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The posterior mean, is a compromise between the prior mean,and the 

sample proportion, where clearly the prior mean has a smaller and smaller 

role as the size of the data sample increases. This is a general feature of 

Bayesian inference: the posterior distribution is centered at a point that 

represents a compromise between the prior information and the data, and 

the compromise is controlled to a greater extent by the data as the sample 

size increases. 
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2.3Informative prior distributions 

In the binomial example, we have so far considered only the uniform prior distribution 

for θ. How can this specification be justified, and how in general do we approach the 

problem of constructing prior distributions? 

Binomial example with different prior distributions 

We first pursue the binomial model in further detail using a parametric family of prior 

distributions that includes the uniform as a special case. For mathematical convenience, 

we construct a family of prior densities that lead to simple posterior densities. 

Considered as a function of θ, the likelihood (2.1) is of the form, 
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Thus, if the prior density is of the same form, with its own values      and     , then the 

posterior density will also be of this form. We will parameterize such a prior density as 
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which is a beta distribution with parameters     and    : B e t a ( , )   



The parameters of the prior distribution are often referred to as hyperparameters. The beta 

prior distribution is indexed by two hyperparameters, which means we can specify 

a particular prior distribution by fixing two features of the distribution, for example its mean 

and variance. 

For now, assume that we can select reasonable values     and     .   The posterior density for     is 
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The property that the posterior distribution follows the same parametric form as the prior 

distribution is called conjugacy; the beta prior distribution is a conjugate family for the 

binomial likelihood.  



To continue with the binomial model with beta prior distribution, the posterior mean of    , 

which may be interpreted as the posterior probability of success for a future draw from the 

population, is now 
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The posterior variance is 
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As    and            become large with fixed      and     ,                           and 

which approaches zero at the rate       . In the limit, the parameters of the prior distribution 

have no influence on the posterior distribution. 
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Conjugate prior distributions 

Conjugacy is formally defined as follows. If      is a class of sampling distributions               , 

and     is a class of prior distributions for     , then the class     is conjugate for     if 

for all                        and 
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Nonconjugate prior distributions 

Although they can make interpretations of posterior inferences less transparent and 

computation more difficult, nonconjugate prior distributions do not pose any new conceptual 

problems. In practice, for complicated models, conjugate prior distributions may not even 

be possible. 



Conjugate prior distributions, exponential families, and sufficient statistics 

    Probability distributions that belong to an exponential family have natural conjugate 

prior distributions, so we digress at this point to review the definition of exponential families; 

for complete generality in this section, we allow data points      and parameters      to be 

multidimensional. The class      is an exponential family if all its members have the form, 
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The quantity         is said to be a sufficient statistic for      , because the likelihood for 

depends on the data    only through the value of        .Sufficient statistics are useful in 

algebraic manipulations of likelihoods and posterior distributions. If the prior density is 

specified as 
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which shows that this choice of prior density is conjugate.  



2.4Estimating a normal mean with known variances 

Likelihood of one data point 

As the simplest first case, consider a single scalar observation    from a normal distribution 

parameterized by a mean    and variance       , where for this initial development we assume 

that      is known. The sampling distribution is 
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Conjugate prior and posterior distributions 

Considered as a function of     , the likelihood is an exponential of a quadratic form in    ,so 

the family of conjugate prior densities looks like 
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We parameterize this family as 
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As usual in this preliminary development, we assume that the hyperparameters are known. 



The conjugate prior density implies that the posterior distribution for θ is the exponential of a 

quadratic form and thus normal, but some algebra is required to reveal its specific form. In the 

posterior density, all variables except θ are regarded as constants, giving the conditional density, 
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Precisions of the prior and posterior distributions 

In manipulating normal distributions, the inverse of the variance plays a prominent role and is  

called the precision. The algebra above demonstrates that for normal data and normal prior  

distribution (each with known precision), the posterior precision equals the prior precision  

plus the data precision. 

we can express       as the prior mean adjusted toward the observed      , 
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Each formulation represents the posterior mean as a compromise between the prior mean 

and the observed value. 



Posterior predictive distribution 
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Posterior predictive distribution 

This development of the normal model with a single observation can be easily extended 

to the more realistic situation where a sample of independent and identically distributed 

observations  1 2
( , . . . , )y y y is available. Proceeding formally, the posterior density is 
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Algebraic simplification of this expression shows that the posterior distribution 

depends on     only through the sample mean,                ; that is,    is a sufficient 

statistic in this model. 
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In fact, since                                  the results derived for the single normal 
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2.5 Other standard single-parameter models  

Normal distribution (known mean and unknown variance) 

 

 

Poisson model 

  Negative binomial distribution 

 Possion model parameterized in terms of rate and exposure 

 

 

Exponential model 

 

 

 

 

 



Normal distribution (known mean and unknown variance) 
 

Likelihood from iid Normal sample y=(y1, y2 , … yn) 

       

   

 
The conjugate prior density is the inverse-gamma 

 

 

 
   We use the convenient but nonstandard notation , 
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The posterior distribution ),(~|
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Poisson model 

Likelihood from iid Poisson sample y=(y1, y2 , … yn) 
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The conjugate prior density  
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. The negative binominal distribution 

We can find the marginal distribution p(y) using the formula 

 

 

 

 
For a single distribution,the Possion has prior predictive distribution 

 

 

     

   which is known as the negative binominal density: 

   y~Neg-bin(α，β） 

 

    The above derivation shows that the negative binominal distribution is a mixture of 

Possion distribution and Gamma distribution. 
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.Possion model parameterized in terms of rate and 
exposure 

To extend the Poisson model for data points y1,……yn to the form 
 

yi~Poisson(xiθ） 

    Here x and θis the unknown parameter of interest.In epidemiology,the parameter θis 

ofen called the rate, and x is called the exposure of ith unit.The likelihood in the extended 

Possion model is  

 

 
Similar to what we have said ever,the conjugate prior distribution is   θ~Gamma(α，β) 

The posterior distribution is 
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.Possion model parameterized in terms of 
rate and exposure 

A Poisson sampling model is often used for epidemiological data of this form. The Poisson 

model derives from an assumption of exchangeability among all small intervals of 

exposure.  

 

Possion model: 

     y—the number of deaths in a city of 200,000 in one year, and  

y ~ Poisson(2.0θ) 

    θ— the true underlying long-term asthma mortality rate in our city (measured in cases 

per 100,000 persons per year).  

     x— exposure x = 2.0,since θ is defined in units of 100,000 people 

 

Prior distribution:According to the trial-and-error exploration of the properties of the 

gamma distribution,   

                      θ~Gamma(3.0, 5.0)     E(θ)=0.6 



Possion model parameterized in terms of 
rate and exposure 

Posterior distribution: because of a conjugate Gamma(α, β) prior distribution ,θ|y ~ 

Gamma(α + y, β + x) in this case.With the prior distribution and data described,  

                   θ|y ~ Gamma(6.0, 7.0) 

   E(θ|y ) =0.86, it means substantial shrinkage has occurred toward the prior distribution.  



Exponential model 

Exponential distribution:appropriate for model ‘waiting times’ and other continuous, 

positive, real-valued random variables, often measured on a time scale. For an outcome y, 

given parameter θ,                          

p(y| θ) = θexp(-yθ), for y > 0 

 

Likelihood:for  n independent exponential observations, y = (y1, . . . , yn), given constant 

rate θ  

                                                          for y≥0 

 
Prior distribution: θ~ Gamma(α, β) ,which can be viewed as α-1 exponential 

observations with total waiting time β . 

 

Posterior distribution:Due to conjugate prior distribution for the exponential parameter 

θ,the posterior distribution is 

                 θ|y~ Gamma(α+n, β+n    )  y
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2.6 Noninformative prior distributions 

Noninformative and weakly informative prior distribution 

 

 

Proper and improper priordistributions 

 

 

Jeffery's invariance principle 

 

 

Pivotal quantities 

 

 

Difficulties with noninformative prior distribution 



Noninformative and weakly informative prior 
distribution 

 
Noninformative prior distributions :prior distributions that can be guaranteed to play a 

minimal role in the posterior distribution and the prior density is described as vague, flat, 

diffuse or noninformative. 

 

 

 

Weakly informative prior distribution:distributions which contains some information — 

enough to ‘regularize’ the posterior distribution,that is, to keep it roughly within rea-

sonable bounds. 

 



Proper and improper prior distributions 

Proper prior density:In general, we call a prior density p(θ) proper if it does not depend on 

data and integrates to 1.  

 

We return to the problem of estimating the mean θ of a normal model with known variance, 

with a N(          ) prior distribution on θ. If the prior precision, 1/     , is small relative to the 

data precision, n/     ,  then the posterior distribution is approximately as if                                             

 

 

   
    Such a distribution isnot strictly possible, since the integral of the assumed p(θ) is infinity, 

which violates theassumption that probabilities sum to 1.  

 

Consider the normal model with known mean but unknown variance, with the conjugate 

scaled inverse-χ2 prior distribution. If the prior degrees of freedom, ν0, are small relative to 

the data degrees of freedom,n, then the posterior distribution is approximately as if ν0= 0: 
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Proper and improper prior distributions 

),|()|(
222

vnInvyp  

 

This limiting form of the posterior distribution can also be derived by defining the prior 

density for      as p(     )∝1/   , which is improper, having an infinite integral over the 

range(0,∞). 
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Jeffery's invariance principle 

)( hLet                      ,the following is prior density on φ: 

 

 

 
Jeffreys’ general principle:any rule for determining the prior density p(θ) should 

yield an equivalent result if applied to the transformed parameter. 

   Jeffreys’ principle leads to defining the noninformative prior density as 

p(θ)∝[J(θ)]1/2,where J(θ) is the Fisher information for θ: 

 

 

  To see that Jeffreys’ prior model is invariant to parameterization, evaluate J(φ) at θ 

=h-1(φ): 
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Jeffery's invariance principle 

 

 
thus                                      ,as required  

 

 

  Jeffert's principle can be extended to multiparameter models,but the results are more 

controversial. 
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Pivotal quantities 

    For the binomial and other single-parameter models, different principles give slightly 

different noninformative prior distributions. But for two cases—location parameters and 

scaleparameters—all principles seem to agree. 

 

 If the density of y is such that p(              ) is a function that is free of θ and y, say,f (u), 

where u = y-θ, then y-θ is a pivotal quantity, and θ is called a pure location parameter. In such 

a case, it is reasonable that a noninformative prior distribution for θwould give f (y-θ) for the 

posterior distribution,            .         .Under this condition, using Bayes’ rule, 

p(               )∝p(θ)p(               ), thereby implying that the noninformative prior density is 

uniform on θ; that is, p(θ)∝constant over the range (-∞,∞).  
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Pivotal quantities 

If the density of y is such that p(y/θ |θ) is a function that is free of θ and y—say, g(u), 

where u = y/θ—then u = y/θis a pivotal quantity and θ is called a pure scale parameter. In 

such a case, it is reasonable that a noninformative prior distribution for θ would give 

g(y/θ)for the posterior distribution, p(y/θ |y). By transformation of variables, the 

conditionaldistribution of y given θ can be expressed in terms of the distribution of u given θ, 

 

 

    and similarly  

     

    After letting both p(u|θ) and p(u|y) equal g(u), we have the identity p(θ|y) = 

y/θp(y|θ).Thus, in this case, the reference prior distribution is p(θ)∝1/θor, equivalently, 

p(log θ)∝1/ 
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Difficulties with noninformative prior distribution 

Searching for a prior distribution that is always vague seems misguided 

 

 

For many problems, there is no clear choice for a vague prior distribution, since a density 

that is flat or uniform in one parameterization will not be in another. 

 

 

Further diffculties arise when averaging over a set of competing models that have im-

proper prior distributions. 


