Bayesian models
for missing data
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Missing data

EM algorithm
.
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* Definition: No data value 1s stored for the variable in
an observation.

* Reasons for missing data
@ inaccessible
& omitted
@ unavailable attributes

@ high cost
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Notations

X = (Xobs + Xmis)

X=|:i = i |=[X,Xz %]

. — 1 as X;; is observed
Y 7 10as X;; is missing
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Types of missing data

« MCAR: missing completely at random
p(M|X)=p(M)
e MAR: missing at random

PM[X)=p(M|X ;)
« MNAR: missing not at random
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A simple exercise

1. A sudden traffic violation happened, some of those
surveyed submitted questionnaires in a hurry with
some missing responses. (MCAR)

2. People with bad jobs seldom answer their incomes.
(MAR)

3. People with low incomes are less likely to report
their incomes. (MNAR)
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Solutions of missing data

* Deletion( listwise and pairwise )




imputation
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Multiple imputations

— Dataset 1
(NN imputing | A
issing data N — _ " M point estimates
m times
D 54
— Dataset m
v

and analysis
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Inference with multiple imputations
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 The EM algorithm formalizes an intuitive idea for
obtaining parameter estimates when some of the
data are missing:

1. replace missing values by estimated values,

2. estimate parameters.

3. Repeat

Step (1) use estimated parameter values as true
values, and

step (2) use estimated values as “observed” values,
iterating until convergence.
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 EM is a method to find 0,,, where

0 = arg max L (O)

ML
0eQ

= arg max log P(X |® )= arg max log P(Z |O)

0eQ 0eQ

*c Z=(X,Y)
@ Z: complete data (“augmented data”)
€ X: observed data (“incomplete” data)
€ Y: hidden data (“missing” data)
€ 0O: aparameter vector.
-~ P
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The inner loop of the EM algorithm

E-step: Compute expectation of
(8,0% : old, new distribution parameters)

Q(6,0")=Eqflog p(z ;6) | X}

M-step: Find 6 that maximizes Q

L0t 1=arg max Q(#, 6%),for all @
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* |In particular, when the distribution of the
complete-data vector belongs to the exponential
family,and the log-likelihood is linear in the
sufficient statistic for 0,the E-step reduces to
computing the expectation of the complete-data
sufficient statistic givien the observed data.




Mixture Model Training

Let the complete-data vector y=(y, - y,,)" be a random

sample from N(u,o?).Suppose y;,i = 1, ..., m are observed
andi =m+1,...,n are missing.

f(y;u,02)=(5)™ 2exp{- T, Yo

2702 o2

}

X y;, ¥ ;%) are sufficient statistics for 8 = (p,02)




At the tt! iteration

For the E-step,compute
° EG(ZyllyObS)_Z 1yl+(n'm)u(t)

2 2
° EB(Z Yi |yobs) 1y12+(n'm)(u(t) 'o'(t) )
For the M-step

1
* u=—Z?—1J’i
~2 1
o= (_ = 1yl)2'_ 1111371
Q
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An example of EM
* Let events be “grade in a class”
Get’s an A P(A)=1/2 a=number 0f A’s
Get’sa B P(B)=u b=number 0f B’s
Get’sa C P(C)=2u c=number 0f C’s

Get’sa D P(D)=1/2-3u  d=number 0f D’s

Suppose we know the
number 0f (A’s+B’s) =h
- number 0f C’s=c

hlber 0f D’s=d
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Same Problem with Hidden Information

REMEMBER
Someone tells us that P(A) = 15
Number of High grades (A's + B's) = A P(B) = 1
Number of C’s =cC P(C) = 2y
Number of D’s =d P(D) = Ya-3p

What is the max. like estimate of pu now?

We can answer this question circularly:

S oL Ll If we know the value of u we could compute the
expected value of aand b y
Since the ratio a:b should be the same as the ratio V2 : u Fﬂ = 1 - h b= ]L h
Y+ Y+
MAXIMIZATION

If we know the expected values of gand b 2
we could compute the maximum likelihood L= tce

value of p 6b+c+d)

—
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e

. REMEMBER
E.M. for our Trivial Problem |-
We begin with a guess for P(B) = 1
We iterate between EXPECTATION and MAXIMALIZATION to PC)=2u
improve our estimates of p and gand b. P(D) = V2-3u
Define p(t) the estimate of p on the t'th iteration
b(t) the estimate of £ on t'th iteration
w(0) =1mitial guess
u(t)h
b(t)= Elp[n(n)]
A + (¢
blt)+c
w(t+1)= ()
6(b(t)+c+d)
= max like est of 1 given b(¢)
A Continue iterating until converged.
— Good news: Converging to local optimum is assured.

Bad news: I said “local” optimum.
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—
E.M. Convergence

e Convergence proof based on fact that Prob(data | u) must increase or
remain same between each iteration ot osvious

e But it can never exceed 1  [osvious]
So it must therefore converge [osvious;

In our example, t H(t) b(t)
suppose we had olo 0
h = fg > 1 |0.0833 2.857
C =
2 1 0.0837 3.158
d=10
_ 3 0.0947 3.185
u(0) =0
- _ - 4 | 0.0948 3.187
onvergence is generally linear: error
y decreases by a constant factor each time > | 0-0948 3.187
- step. 6 | 0.0948 3.187
e
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