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Our goals

provide enough guidance
SO we can combine
generalized linear
models with the ideas of
Bayesian analysis.
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Linear regression model

Classical linear regression model
Y=X[B+¢

Where we obtain the following variables

Y —— endogenous variable
X ———exogenous variable
,3 — the regression coefficient

E —— the random error
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Linear regression model

A possible assumption of &£
Id 5
g~ N(0,0°)
We denote that U= XIB

:>,u=E(Y‘X)
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Linear regression model

Several properties of linear regression model
E(Y)=u=Xp
X, Y are continuous variables;

Y ~N(u,0°)
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Linear regression model

shortage of linear regression model

The assumption that Y have normal distribution is impractical

o,

Exogenous variable can only effect on endogenous variable through addition

o,

Endogenous variable must be continuous variable
o,
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Linear regression model

discontinuous characters

e Counted variables
0-1variables Z~P(4)

e variables do no follow the normal distribution

variables follow Gamma distribution ,binomial distribution

And so on
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Introduction of GLM

Difference between linear model and GLM

1.Endogenous variables can follow any
distribution in exponential family of distributions ;

2.We induct link function @(1)=Xp to
measure the mean of endogenous
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Introduction of GLM

Several properties of linear regression model

X, Y can be continuous or discrete variables

b
(Y, 11,4) = exp y(‘g( ¢)(“)+c(y,¢)

E(Y) = 1,0(1) = X
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Introduction of GLM

A generalized linear model is specified in three stages:

1. The linear predictor 8=Xpg

2. The link function g( J that relates the linear predictor to the
mean of the outcome

variable: u =67 (Xp)

3. The random component specifying the distribution of the
outcome variable y with mean

E(y|X) = u. The distribution can also depend on a dispersion
parameter, .



Introductien of GLM

The probability density function of the exponential family

8 —b(6
FOr16,9) = expZ "2 4 (7, 0))

0 is a canonical parameter and a function of the mean of the outcome
variable p

b(B) is a function of 8 and has positive second order derivative
® is a dispersion parameter that plays a role in defining the variance of y

c(y, ®) is a function of y and &



Introductien of GLM

We can use normal distribution f(y|u, o%) to find connections

with the exponential family.
92

u=ae, b(9)=7, b = g2

More generally, we can set 8 as linear predictor and get link
function:

o(w) = XB

Analogously, we can get the expectation and variance of y:

E(y)=0b'(6), Var(y)=>b"(0)®



Introductien of GLM

The mean of the distribution of y, given X, is determined by X: E(y | X) =
6~ 1(XB).We use the same notation as in linear regression whenever possible,

so that X is the n X p matrix of explanatory variables and 8 = X is the vector
of n linear predictor values.

[f we denote the linear predictor for the ith case by X;f and the variance or

dispersion parameter(if present) by @, then the data distribution takes the
form

P(_‘V|X,ﬁ, (I)) = l—[p(yllxlﬁf (I))
=1



Introductien of GLM

Normal distribution

Normal distribution has an identity link function 6 (pn) = .

With a assumption e~N (0, 0’2) ,we can learn that linear
regression model y = X8 + ¢ is a special case of the
generalized linear model, for

y|B, X, c?~N(XB,c2).



Introductien of GLM

Poisson distribution

Counted data are often modeled using a Poisson model. The Poisson
generalized linear model, often called the Poisson regression model,
assumes that y is Poisson with mean p (and therefore variance p).

The link function is typically chosen to be the logarithm, so that
log p = XB. The distribution for datay = (y4, ... ... , Vn ) is thus

p(yIB) =Ili=4 yi[, e ~eXP(01) (exp(6;))”

where 6;= Xif is the linear predictor for the i-th case.



Introductien of GLM

Binomial distribution

Suppose that y; ~Bin(n;, i;) with n; known. It is common to specify
the model in terms of the mean of the proportions y; /n;, rather than
the mean of y;. Choosing the logit transformation of the probability
of success, 6(y;) =log(u;/(1—u;)), as the link function leads to the
logistic regression model.

The distribution for data y is

p(y1B) =TT1 (1) (o) i(

1
1+e

Bi)ni—yi



Introductien of GLM

GLM:
nonlinear model;
Discrete data

Bayesian Analysis:
Small sample size
Too many parameters
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example

reserve for outstanding losses

To fail to draw or carry down various Kinds of
liability reserves or fail to draw reserve for ..,
outstanding losses according to the provisio

of this law. In general, we take the unbiased &2
estimator of expected value of outstanding

losses as the reserve for outstanding lossg / P
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Triangular flow
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example

We define the following variables

Xi the aggregate amount of outstanding losses in the ith year

y j the probability of outstanding losses in the jth year

C. the expected amount of outstanding losses in the jth year when
I one insured in the ith year
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example

Over-dispersed Poisson model
2~ p(4)
X=z,(p21)
The prior distribution

X; ~Gamma(«;, )
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example

Then we obtain that

n n—i+l

f(x,y‘cij,izl,---,n,j 1,---,n— |+1gp)ocHH f(cu|xygo)l_[f( )f(y)

i=1 j=1

Therefore, we can measure the expected amount of outstanding
losses In the jth year when one insured in the ith year

éij = E(Cij) — exp(ﬁij)

We can measure the reserve for outstanding losses

R=>c,
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