


Our goals

provide enough guidance 

so we can combine 

generalized linear 

models with the ideas of 

Bayesian analysis.



Overviews



Linear regression model

Classical linear regression model

Y X  

Y

Where we obtain the following variables

—— endogenous variable

X —— exogenous variable

 —— the regression coefficient

 —— the random error



Linear regression model

A possible assumption of 
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We denote that X 

( )E Y X 



Linear regression model

Several properties of linear regression model 

 E Y X  

,X Y are continuous variables;

2( , )Y N  



Linear regression model

shortage of linear regression model 

The assumption that Y have normal distribution is impractical

Exogenous variable can only effect on endogenous variable through addition 

Endogenous variable must be continuous variable



Linear regression model

discontinuous characters

Counted variables

0-1variables ( )z P 

variables do no follow the normal distribution

variables follow Gamma distribution ,binomial distribution

And so on 



Introduction of GLM

Difference between linear model and GLM

1.Endogenous variables can follow any 

distribution in exponential family of distributions ; 

2.We induct link function                          to 

measure the mean of endogenous

( ) X  



Several properties of linear regression model 

Introduction of GLM

can be continuous or discrete variables
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A generalized linear model is specified in three stages:

1. The linear predictor

2. The link function g(·) that relates the linear predictor to the 

mean of the outcome

variable

3. The random component specifying the distribution of the 

outcome variable y with mean

E(y|X) = μ. The distribution can also depend on a dispersion 

parameter, φ.

Introduction of GLM

 1:   X    

X 



The exponential  family

Introduction of GLM



Link function , expectation and variance of  y  

Introduction of GLM



Likelihoods

Introduction of GLM



Normal distribution

Standard GLM likelihoods

Introduction of GLM



Poisson distribution

Standard GLM likelihoods

Counted data are often modeled using a Poisson model. The Poisson 
generalized linear model, often called the Poisson regression model, 
assumes that y is Poisson with mean μ (and therefore variance μ). 

Introduction of GLM



Binomial distribution

Standard GLM likelihoods

Introduction of GLM



The combination of GLM and  Bayesian Analysis

GLM: 
nonlinear model; 
Discrete data
…

Bayesian Analysis:
Small sample size
Too many parameters
…

Introduction of GLM



example

reserve for outstanding losses

To fail to draw or carry down various kinds of 

liability reserves or fail to draw reserve for 

outstanding losses according to the provisions 

of this law. In general, we take the unbiased 

estimator of expected value of outstanding 

losses as the reserve for outstanding losses.



example

Triangular flow 



example

We define the following variables

the aggregate amount of outstanding losses in the ith year 

the probability of outstanding losses in the jth year 

the expected amount of outstanding losses in the jth year when

one insured in the ith year

ix

jy

ijc



example

Over-dispersed Poisson model
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The prior distribution

( , )j i ix Gamma  



example

Then we obtain that
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Therefore, we can measure the expected amount of outstanding 

losses in the jth year when one insured in the ith year 

ˆˆ ( ) exp( )ij ij ijc E c  

We can measure the reserve for outstanding losses

ijR c




