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Support Vector Machines (SVM) method produces nonlinear boundaries
by constructing a linear boundary in a large, transformed version of the
feature space.

Feng Li (Stat & Math, CUFE) Statistical Learning 1 / 16



Support vector classifiers

consider the datasets tyi, xiu for i = 1, ...,N where yi P t´1, 1u and
xi is a p dimensional vector.
Define the hyperplane

tx : f(x) = xTβ+ β0 = 0u
where β is a unit vector ||β|| = 1
The classification rule

G(x) = sign(XTβ+ β0)

Find a function f(x) = x 1β+ β0 with yif(xi) ą 0 for all i = 1, ...,N.
Hence we are able to find the hyperplane that creates the biggest
margin (M) between the training points for class 1 and ´1.

max||β||=1,β,β0M

subject to
yif(xi) ěM for all i = 1, ...,N
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The support vector classifier optimization

The previous optimization is equivalent of

minβ,β0 ||β||

subject to yi(x 1iβ+ β0) ě 1 for all i = 1, ...,N
The situation we have discussed is the non overlapping case (next
figure, left)
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Figure: Support vector classifiers. The left panel shows the separable case. The
decision boundary is the solid line. The right panel shows the nonseparable
(overlap) case. The margin is maximized subject to a total budget constant.
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The support vector classifier overlapped case
Overlapping in feature space (previous figure, right)
Still maximize M, but allow for some points to be on the wrong side
of the margin.

§ Define the slack variables ξ = (ξ1, ..., ξN).
§ The constrain is now as

yi(x
1
iβ+ β0) ěM´ ξi

or

yi(x
1
iβ+ β0) ěM(1´ ξi)

for all ξi ě 0 and
ř

ξi ď c

The two choices lead to different solutions.
§ The first measures overlap in actual distance from the margin; the

second choice measures the overlap in relative distance.
§ the first choice results in a nonconvex optimization problem, while the

second is convex; the second leads to the “standard” support vector
classifier.

§ The second one is used from here on.
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Computing the Support Vector Classifier
The previous optimization can be re-expressed using the Lagrange
multipliers

mimβ,β0
1
2 ||β||

2 + C
N
ÿ

i=1
ξi

subject to ξi ě 0, yi(x 1iβ+ β0) ě 1´ ξi where C is the constrain.
Furthermore, when C = ∞, it reduces to the
separable(non-overlapping) case.
The Lagrange function is then

Lp =
1
2 ||β||

2 +C
N
ÿ

i=1
ξi ´

N
ÿ

i=1
αi(yi(x

1
iβ+ β0)´ (1´ ξi))´

N
ÿ

i=1
µiξi

Then let BLp/Bβ = 0 and solve for β which yields

β =
ÿN

i=1
αyixi,

ÿN

i=1
αyi = 0, and αi = C´ µi
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Computing the Support Vector Classifier
Put the solution back to the Lagrange function, we obtain the
Lagrangian dual objective function

LD =
N
ÿ

i=1
αi ´

1
2

ÿN

i=1

ÿN

i 1=1
αiαi 1yiyi 1xTi xi 1

which is the lower bound of the optimized function and xTi xi 1 is the
inner product of xi and xi 1 , denoting as ă xi, xi 1 ą

Now maximize LD with the constrain 0 ď αi ď C and
řN
i=1 αiyi = 0

α̂i = C

β̂ =
ÿN

i=1
α̂yixiα̂i = C

β̂0 is from the solution of αi(yi(x 1iβ+ β0)´ (1´ ξi)) = 0
Those observations that meet the constrain

yi(x
1
iβ+ β0)´ (1´ ξi) ě 0

are called the support vectors.
Feng Li (Stat & Math, CUFE) Statistical Learning 7 / 16



The Support Vector Classifier decision function

The decision function

Ĝ(x) = sing(f̂(x)) = sign(x 1β̂+ β̂0)

Ĝ(x) depends on the tuning parameter C.

Feng Li (Stat & Math, CUFE) Statistical Learning 8 / 16



Figure: The linear support vector boundary for the mixture data exam- ple with two
overlapping classes. The broken lines indicate the margins, where f(x) = ˘1. The
support points (ξ ą 0) are all the points on the wrong side of their margin. The black
solid dots are those support points falling exactly on the margin (ξ = 0, αi ą 0). The
broken purple curve in the background is the Bayes decision boundary.
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The Support Vector Machines

We have discussed finding linear boundaries in the input feature space.
We can make the procedure more flexible by enlarging the feature
space using basis expansions such as polynomials or splines
The support vector machine classifier allows the dimension of the
enlarged space is allowed to get very large, infinite in some cases.

§ The computations would become prohibitive.
§ With sufficient basis functions, the data would be separable, and

overfitting would occur.
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Compute the SVM for Classification
We now replace the feature xi with nonlinear function h(xi). Then
we have f̂(x) = h(x)T β̂+ β̂0.
The Lagrange dual function now has the form

LD =
N
ÿ

i=1
αi ´

1
2

ÿN

i=1

ÿN

i 1=1
αiαi 1yiyi 1 ă h(xi),h(xi 1) ą

If we let K(x, x 1) =ă h(xi),h(xi 1) ą, we may select “good” K(x, x 1)
that finds the best boundary. Remember K should be symmetric and
semi-positive definite. Some popular choices

K(x, x 1) = (1+ ă x, x 1 ą)d

K(x, x 1) = exp(´γ||x´ x 1||2)
K(x, x 1) = tanh(κ1 ă x, x 1 ą +κ2)

There is still a tuning parameter C. A large value of C will discourage
any positive ξ, and lead to an overfit wiggly boundary in the original
feature space; a small value of C will encourage a small value of ||β||,
which in turn causes f(x) and hence the boundary to be smoother.
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Figure: The plot uses a 4th degree polynomial kernel. C was tuned to approximately
achieve the best test error performance. The radial basis kernel performs the best (close
to Bayes optimal). The broken purple curve in the background is the Bayes decision
boundary.
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SVM for regression

Consider the linear regression model

f(x) = x 1β+ β0

and we estimate β by minimizing

H(β,b0) =
ÿN

i=1
V(yi ´ f(xi)) +

λ

2 ||β||
2

where

V(yi ´ f(xi)) =

#

0 if |(yi ´ f(xi))| ă ε
|(yi ´ f(xi))| ´ ε, otherwise

is the support vector error
There is a rough analogy with the support vector classification setup,
where points on the correct side of the decision boundary and far
away from it, are ignored in the optimization. In regression, these
“low error” points are the ones with small residuals.
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SVM for regression

Use similar type of error

V(yi ´ f(xi)) =

#

(yi ´ f(xi))
2 if |(yi ´ f(xi))| ă ε

c|(yi ´ f(xi))| ´ c
2/2, otherwise

Some properties
§ This construction makes the fitting less sensitive to outliers
§ The support vector error measure (12.37) also has linear tails, but in

addition it flattens the contributions of those cases with small residuals.

The solution

β̂ =
ÿN

i=1
(α̂˚i ´ α̂i)xi

where α̂˚i and α̂i from the solution from the minimizing the Lagrange
function.
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SVM for regression

We can approximate the regression in terms of basis functions h(x)

f(x) =
M
ÿ

m=1
βmhm(x) + β0

We minimize

H(β,β0) =
ÿN

i=1
V(yi ´ f(xi)) +

λ

2
ÿ

β2
m

We can use the support vector errors V() here too.
Special case when V(yi ´ f(xi)) = (yi ´ f(xi))

2

§ we minimize

H(β) = (y´Hβ) 1(y´Hβ) + λ||β||2

§ The solution is

ŷ = Hβ̂

Feng Li (Stat & Math, CUFE) Statistical Learning 15 / 16



SVM in R

The e1071 package
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