Spline Methods

Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

Today we are going to talk about...

1 Piecewise Polynomials

2 Avoiding knots selection with smoothing splines

3 Multi-dimensional splines

Piecewise Polynomials

- \bullet Consider the regression model with only y and X
- Let

$$h_{i}(X) = (X - \xi_{i})_{+} = \begin{cases} X - \xi_{i}, & X > \xi_{i} \\ 0, & \text{elsewhere} \end{cases}$$

for i = 1, ..., p

• Then set up a regression model

$$y = \beta_0 + \beta_1 X + \alpha_1 h_1(X) + \ldots + \alpha_p h_p(X) + \varepsilon$$

Higher order piecewise polynomials

Let

$$\begin{split} h_{j} &= (X) = X^{j-1}, j = 1, ..., M \\ h_{M+l}(X) &= (X - \xi_{l})_{+}^{M-1}, l = 1, ..., K \end{split}$$

- Then use all h() with Y to setup a regression model.
- Terminologies: basis functions, knots, knots locations.
- Regression splines: when the knots are fixed

Discontinuous

Continuous

Continuous First Derivative

Continuous Second Derivative

Natural cubic splines

• Define

$$d_k(X) = \frac{(X-\xi_k)_+^3 - (X-\xi_K)_+^3}{\xi_K - \xi - k}$$

• And the spline is defined as

$$h_k(X) = d_k(X) - d_{K-1}(X)$$

FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final model selected by the stepwise procedure. Included are pointwise standard-error bands. The rug plot at the base of each figure indicates the location of each of the sample values for that variable (jittered to break ties).

B-splines

- Assume we have the two boundary knots $\xi_0 < \xi_1$ and $\xi_K < \xi_{K+1}.$
- We define a knot sequence τ such that

$$\begin{split} \tau_1 \leqslant \tau_2 \leqslant ... \leqslant \tau_M \leqslant \xi_o \\ \tau_{j+M} &= \xi_j, j = 1, ..., K \\ \xi_{K+1} \leqslant \tau_{K+M+1} \leqslant \tau_{K+M+2} \leqslant ... \tau_{K+2M} \end{split}$$

• Let $B_{i,m}(x)$ the ith B-spline function of order m < M for the knot-sequence τ .

$$B_{i,1}(x) = \begin{cases} 1, & \tau_i \leq x \leq t_{i+1} \\ 0, \text{ otherwise} \end{cases}$$
$$B_{i,m}(x) = \frac{x - \tau_i}{\tau_{i+m-1} - \tau_i} B_{i,m-1}(x) + \frac{\tau_{i+m} - x}{\tau_{i+m} - \tau_{i+i}} B_{i+1,m-1}(x)$$

- Properties of B-spline
 - A B-spline is a continuous function at the knots.
 - Any spline function of degree k on a given set of knots can be expressed as a linear combination of B-splines.

Feng Li (StatMath, CUFE)

Avoiding knots selection with smoothing splines

• The smoothing spline is to minimize

$$RSS(f,\lambda) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt$$

where λ is the **smoothing parameter**

- $\lambda = 0$ the usual spline fitting with not penalty.
- λ → ∞ the curve is moving from rough to very smooth till a regression line without knots (very heavy penalty)

Smoothing example with natural cubic splines

• For natural cubic splines

$$f(x) = \sum_{j=1}^{K} \theta_j h_j(x)$$

The RSS is now as

$$RSS(\theta, \lambda) = \sum_{i=1}^{N} \{y_i - \sum_{j=1}^{K} h_j(x_i)\}^2 + \lambda \int \left\{ \frac{\partial^2 \sum_{j=1}^{K} h_j(t_i)}{\partial t^2} \right\}^2 dt$$

• And the solution is

$$\hat{\theta} = \left(N'N + \lambda \int \{f''(t)\}^2 dt\right)^{-1} N'y$$

where N is the design matrix with all the data and basis functions.

• And the degree of freedom (no. of free parameters) is obtained through the trace of the hat matrix.

FIGURE 5.6. The response is the relative change in bone mineral density measured at the spine in adolescents, as a function of age. A separate smoothing spline was fit to the males and females, with $\lambda \approx 0.00022$. This choice corresponds to about 12 degrees of freedom.

Spline methods in logistic regression

• Recall the logistic regression

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = K | X = x)} = f(x)$$

where k = 1, 2, ..., K - 1.

- Splines can also be used in f(x).
- Need maximum likelihood method to obtain $\hat{\beta}$.
- Newton-Raphson algorithm is exactly of the same.

Multi-dimensional splines

- All the cases we considered are univariate splines.
- Multivariate splines are not so rich.
- People usually use thinplate splines

$$g(x_1, ... x_q, \xi_j) = \|x - \xi_j\|^2 \ln \|x - \xi_j\|$$

• Can handle the interactions but the model complexity increase dramatically with the interactive knots.

Discussions

- How do you choose from different splines?
- How do we avoid overfitting in spline method?
- How to apply shrinkage methods like LASSO in splines?
- How to choose $\boldsymbol{\lambda}$ with smoothing splines
- Do we obtain unbiased estimators in spline methods?
- What is the bias-variance trade off?