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The Likelihood Function

• EXAMPLE (BERNOULLI).

x1, ..., xn|θ
iid∼ Bern(θ).

• Likelihood:

p(x1, ..., xn|θ) = p(x1|θ) · · · p(xn|θ)
= θs(1− θ)f ,

where s =
Pn
i=1 xi is the number of successes in the Bernoulli trials

and f = n− s is the number of failures.

• Given the data x1, ..., xn, we may plot p(x1, ..., xn|θ) as a function of
θ.



Learning From Data - Bayes’ Theorem

• Given that you have formulated a distribution for θ, p(θ), how can

we learn from data? That is, how do we make the transition from

p(θ)→ p(θ|Data)? Bayes’ theorem is the key.

• One form of Bayes’ theorem reads (A and B are events)

p(A|B) = p(B|A)p(A)
p(B)

.

So that Bayes’ theorem ’reverses the conditioning’, i.e. takes us from

p(B|A) to p(A|B).



• Let A = θ and B = Data

p(θ|Data) =
p(Data|θ)p(θ)

p(Data)
.

• Interpreting the likelihood function as a probability density for θ is just
as wrong as ignoring the factor p(A)/p(B) in Bayes’ theorem.



Bayesian updating

• Suppose: you already have x1,x2, ..., xn data points, and the corre-
sponding posterior p(θ|x1, ..., xn)

• Now, a fresh additional data point xn+1 arrive.

• The posterior based on all available data is

p(θ|x1,..., xn+1) ∝ p(xn+1|θ, x1, ..., xn)p(θ|x1, ..., xn).

• The following is thus equivalent:



— Analyzing the likelihood of all data x1,..., xn+1 with the prior based

on no data p(θ)

— Analyzing the likelihood of the fresh data point xn+1 with the

’prior’ equal to the posterior based on the old data p(θ|x1, ..., xn).

• Yesterday’s posterior is today’s prior.



Conjugate priors

� Normal likelihood: Normal prior!Normal posterior. (posterior be-
longs to the same distribution family as prior)

� Binomial likelihood: Beta prior!Beta posterior.

� Conjugate priors: Let F = fp(yj�); � 2 �g be a class of sampling
distributions. A family of distributions P is conjugate for F if

p(�) 2 P ) p(�jx) 2 P
holds for all p(xj�) 2 F .

� Natural conjugate prior : p(�) = c � p(y1; :::; ynj�) for some constant
c, i.e. the prior is of the same functional form as the likelihood.



� EXAMPLE (CONJUGATE PRIOR FOR POISSON MODEL). Likelihood from iid

Poisson sample y = (y1; :::; yn)

p(yj�) =
hYn

i=1
p(yij�)

i
/ �(

Pn
i=1 yi) exp(��n);

so that the sum of counts
Pn
i=1 yi is a su�cient statistic for �:

Natural conjugate prior for Poisson parameter �

p(�) / ���1 exp(���) / Gamma(�; �)

which contains the info: �� 1 counts in � observations.



Posterior for Poisson parameter �: Multiplying the poisson likelihood and

the Gamma prior gives the posterior

p(�jy1; :::; yn) /
hYn

i=1
p(yij�)

i
p(�)

/ �
Pn
i=1 yi exp(��n)���1 exp(���)

= ��+
Pn
i=1 yi�1 exp[��(� + n)];

which is proportional to the Gamma(�+
Pn
i=1 yi; � + n) distribution. In

summary

Model: y1; :::; ynj�
iid� Po(�)

Prior: � � Gamma(�; �)
Posterior: �jy1; :::; yn � Gamma(�+

Xn

i=1
yi; � + n).



Non-informative priors

� ... do not exist!

� ... may be improper and still lead to proper posterior

� Regularization priors

� Ideal communication. Present the posterior distributions for all possi-
ble priors.

� Practical communication - Reference priors.



Je�reys' prior

� A common non-informative prior is Je�reys' prior

p(�) = jI(�)j1=2 ;

where

J(�) = �Eyj�

"
d2 ln p(yj�)

d�2

#
is the expected Fisher information.



� EXAMPLE (JEFFREYS' PRIOR FOR BERNOULLI DATA):

y1; :::; ynj�
iid� Bern(�):

ln p(yj�) = s ln � + f ln(1� �)

d ln p(yj�)
d�

=
s

�
� f

(1� �)

d2 ln p(yj�)
d�2

= � s

�2
� f

(1� �)2

J(�) =
Eyj�(s)

�2
+
Eyj�(f)

(1� �)2
=
n�

�2
+
n(1� �)
(1� �)2

=
n

�(1� �)
Thus, the Je�reys' prior is

p(�) = jJ(�)j1=2 / ��1=2(1� �)�1=2 / Beta(�j1=2; 1=2):



Prediction

� We may use the estimated model for forecasting a future observation
~y.

� Posterior predictive distribution (y denotes available data at the time
of forecasting)

p(~yjy) =
Z
�
p(~yj�; y)p(�jy)d� =

Z
�
p(~yj�)p(�jy)d�

where the last step holds if p(~yj�; y) = p(~yj�).

� The uncertainty that comes from not knowing � is represented in

p(~yjy) by averaging over p(�jy).



Gibbs sampling

� Easily implemented methods for sampling from multivariate distribu-

tions, p(�1; :::; �k).

� Requirements: Easily sampled full conditional posteriors:

{ p(�1j�2; �3:::; �k)

{ p(�2j�1; �3; :::; �k)

{ ...

{ p(�kj�1; �2; :::; �k�1)



The Gibbs sampling algorithm

Step A: Choose initial values �
(0)
2 ; �

(0)
3 ; :::; �

(0)
n :

Step B:B1 Draw �
(1)
1 from p(�1j�

(0)
2 ; �

(0)
3 ; :::; �

(0)
n )

B2 Draw �
(1)
2 from p(�2j�

(1)
1 ; �

(0)
3 ; :::; �

(0)
n )

:

Bn Draw �
(1)
n from p(�nj�(1)1 ; �

(1)
2 ; :::; �

(1)
n�1)

Step C: Repeat Step B N times.



� The Gibbs draws �(1); �(2); ::::; �(N) are dependent, but arithmetic
means converge to expected values

1

N

NX
t=1

�
(t)
j ! E(xj)

1

N

NX
t=1

g(�(t)) ! E[g(�)]

� More generally, the Gibbs sequence �(1); �(2); ::::; �(N) converges in
distribution to the target posterior p(�1; :::; �k).

� �(1)j ; :::; �
(N)
j converge to the marginal distribution of �j, p(�j).



The Metropolis Algorithm

� Initialize with � = �0

� For t = 1; 2; :::

{ Sample a proposal draw ��j�(t�1) � Jt(��; �(t�1))

{ Accept �� with probability

r(��; �(t�1)) = min

"
p(��jy)

p(�(t�1)jy)
; 1

#
:

If the proposal is accepted, set �(t) = ��, otherwise set �(t) =
�(t�1).



� We must be able to compute the posterior density p(�jy) for any �.

� The Metropolis algorithm works even if p(�jy) is only known up to a
proportionality constant as it simply cancels in r(��; �(t�1)).

� The proposal, or jumping, distribution Jt(��j�(t�1)) may vary from
iteration to iteration.

� Jt(��; �(t�1)) must be symmetric, i.e.

Jt(�aj�b) = Jt(�bj�a) for all �a; �b and t:

� Every proposal that �� that lies uphill (p(��jy) � p(�(t�1)jy)) is ac-
cepted with certainty. Downhill moves accepted with prob. r(��; �(t�1)):



� Common choice of proposal distribution:

Jt(�
�j�(t�1)) = N(�(t�1);�);

where � = c2I�1(�̂) and I�1(�̂) is the observed information matrix
at the posterior mode (obtained either analytically or by numerical

optimization prior to the posterior sampling). c is a tuning constant

(see the 'optimal' value of c in Section 11.9).



The Linear Regression Model

� The ordinary linear regression model:

yi = �1xi1 + �2xi2 + :::+ �kxik + "i

"i
iid� N(0; �2):

� Parameters � = (�1; �2; :::; �k; �2).



� Assumptions:

{ E(yi) = �1xi1 + �2xi2 + :::+ �kxik (linear function)

{ V ar(yi) = �
2 (homoscedasticity)

{ Corr(yi; yjjX) = 0, i 6= j.

{ Normality of "i.



� The linear regression model in matrix form

y
(n�1)

= X�
(n�k)(k�1)

+ "
(n�1)

y =

0B@ y1
...
yn

1CA ; � =
0B@ �1

...
�k

1CA ; " =
0B@ "1

...
"n

1CA
X =

0B@ x01...
x0n

1CA =
0B@ x11 � � � x1k

... . . . ...
xn1 � � � xnk

1CA

� Usually xi1 = 1, for all i. �1 becomes the intercept.

� Likelihood:
yj�; �2; X � N(X�; �2In)



� Standard non-informative prior: uniform on (�; log �)

p(�; �2) / ��2

� Joint posterior of � and �2:

p(�; �2jy) = p(�j�2; y)p(�2jy):

� Conditional posterior of � :

�j�2; y � N(�̂; �2V�)

�̂ = (X 0X)�1X 0y

V� = (X 0X)�1.



� Marginal posterior of �2 :

�2jy � Inv-�2(n� k; s2)

s2 =
1

n� k
(y �X�̂)0(y �X�̂):

� Marginal posterior of � :

�jy � tn�k(�̂; �2V�):

which is proper if n > k and X has full column rank.

� Simulate from the joint posterior by iteratively simulating from p(�2jy)
and p(�j�2; y).



� Predictive distribution of response ~y with known predictors ~X :

~yjy; ~X = tn�k[ ~X�̂; s
2(I + ~XV� ~X

0)]

Predictive Variance = s2I + ~Xs2V� ~X
0

= "-Variance + ~X(Posterior Variance of �) ~X 0:


